Tracking Actual Usage: the Attention Metadata Approach

Martin Wolpers, Jehad Najjar, Katrien Verbert and Erik Duval
Katholieke Universiteit Leuven (K.U.Leuven)
B-3001 Leuven, Belgium
{martin.wolpers, jehad.najjar, katrien.verbert, erik.duval}@cs.kuleuven.be

ABSTRACT
The information overload in learning and teaching scenarios is a main hindering factor for efficient and effective learning. New methods are needed to help teachers and students in dealing with the vast amount of available information and learning material. Our approach aims to utilize contextualized attention metadata to capture behavioral information of users in learning contexts that can be used to deal with the information overload in user centric ways. We introduce a schema and framework for capturing and managing such contextualized attention metadata in this paper. Schema and framework are designed to enable collecting and merging observations about the attention users give to content and their context. The contextualized attention metadata schema enables the correlation of the observations, thus reflects the relationships that exists between the user, her context and the content she works with. We illustrate with a simple demo application how contextualized attention metadata can be collected from several tools, the merging of the data streams into a repository and finally the correlation of the data.

Keywords
Context, Attention Metadata, Usage Data, User Behaviour, Attention Recorders

1. Introduction
Knowledge intensive work like teaching and learning requires the handling of large amounts of information in a personalized way. Therefore, learning management systems need detailed user profiles to be able to provide personalized services (Duval & Hodgins 2003). Instead of basing personalization on stereotypes (Henze & Nejdl 2003), such systems utilize detailed information about a specific user including observations on the handling of digital content and the user attention. This allows information systems to more correctly conclude on the user aims and goals (Jones et al., 2000, Najjar, et al., 2004).

Recent research focuses on the attention of users based on the hypothesis that attention information supports correct conclusions on the user aims and goals. Attention here refers to which activities the user carries out on her computer with which content and in which context.

Two examples illustrate how observations about the attention of a user can help the user to deal with large amount of digital information. First of all, consider the scenario to enable personalized access to information. Martin is a lecturer and assembles course material for his course on “Multimedia modelling and Programming”. By analyzing what he has done so far, and by looking at what other people following the same task have done, the system can help him find suitable learning material – suitable with respect to the course but also with respect to Martin’s knowledge and preferences derived from his previous interactions. By also taking into account the previous interactions of his students with the content of the course, the system can help Martin identify the knowledge that the
students are still missing which he can then include in his course. Furthermore, based on the
observations how the students deal with the course material Martin has provided so far, Martin is
able to target the material to their needs. For example, if the majority of students prefer to work with
graphical representations, Martin can tailor his course material to this need by including more
images, videos, tables, etc. Without this information, Martin would include the material he thinks
(but not knows) is best suited for his students.

The second example deals with the support of the system in managing the vast amount of available
information, by relating the information sources and their handling to drive the information
provision. While Martin works with the course material, he only wants to receive emails related to
his course, but wants to block out any other communications. Therefore, incoming emails from his
students are shown but emails from colleagues relating to complete other subjects are suppressed. In
addition, if a student email asks for an appointment, the email will be automatically annotated with
possible meeting times that, if acknowledged, are automatically inserted into Martin’s diary.
Furthermore, while working, Martin likes to listing to music from musicals. The system has already
observed this behaviour and therefore provides him with a selection of suitable titles. Incoming chats
are blocked unless related to the course. The system also helps Martin find appropriate course
material: while searching for course material, he is automatically pointed to recommended sources of
material. The necessary recommendations are, for example, extracted from emails, documents and
chats and ranked according to how Martin appreciated the sender and/or author.

What is needed to enable such scenarios is a technology that easily spans across system boundaries
and captures the attention a user spends on content (Wolpers et.al. 2006). We propose a framework
that is able to capture the observations about the user activities with digital content. We explain our
understanding of attention, observations about the user, digital content and context in chapter 2. In
order to describe the observations, we developed a metadata schema that is outlined in chapter 3. A
case study in section 4 provides first examples on how advanced services use the observations made
about the user, her attention and her context. Concluding this paper, section 5 discusses first results
and future work.

2. Attention

Collecting appropriate data to enable improved personalized services is the focus of this paper. This
is achieved by collecting and formalizing observations on how and what the user spends her
attention and in which context. In general, there is no agreed definition of attention. Nevertheless, as
Roda and Thomas point out (Roda & Thomas, 2006), “most researchers refer to attention as the set
of processes enabling and guiding the selection of incoming perceptual information.” We follow this
interpretation and apply it to the everyday handling of digital content. By limiting our approach to
unobtrusively observing user behaviour in dealing with information, the computer of the user is used
as the major source of observations. Note, that when referring to digital content, the term document
is used in the remainder of this paper. A document can be a web page, a word file, a jpeg images, an
email, a chat session, an mp3 music file, etc.

The user deals with the documents in a particular way that is specific only to her. By capturing and
generalizing her behaviour, emerging patterns of her behaviour can be used to describe her. For
example, such patterns can be derived from data observing how the user gets the documents, e.g. via email, chat or if she found them through web search services, etc. Furthermore, her behaviour while working with the documents provides further data; e.g. just storing it or copy parts to be used on a slide show, etc.

The observations can be generalized into behavioural patterns. Behavioural patterns describe in general how a user handles information, e.g. which activities she carries out with them. The comparison of behavioural patterns from various users allows clustering similar users. Based on such clusters, we expect to be able to precisely predict future steps and goals of user.

2.1 Capturing User Attention

Capturing observations about the attention of users requires solving two problems: First, applications need to be developed that capture the observations of the user attention. Such applications need to integrate into the user daily working environment without disturbing or interrupting her. Moreover, the applications need to capture the observations from existing applications of daily use, e.g. the Microsoft Office suite, web browsers, mail clients, the WINAMP music player or MSN Messenger. A number of suitable tools are provided in chapter 4. Each of these tools continuously provides observations, thus generates a stream of information on the interactions of the user with the respective application.

Furthermore, user observations need to be captured in a generalized format that allows merging of the various streams of observations. By merging the observations, it is possible to contextualize each observation, e.g. by identifying which activities the user carried out simultaneously or within a short time-span. For example, a context that can be identified is which music the user listened to while writing an email, with which content and to whom. Another example is with which keywords the user found relevant documents that were afterwards used by her. We therefore speak of contextualized observations of the user attention. We broaden our notion of context by describing the context through all additional information (e.g. information about parallel activities) available at the time the user activity is taking place. For example, consider our previously outlined scenario where Martin puts course material together for his course on “Multimedia modelling and programming.” He might stop this activity to resume it a couple of days later. We aim to keep the context in which the course material is assembled thus must also capture when Martin is resuming working on the respective course material. Therefore, from our perspective contextual information is related to the observed user activity in time and/or content.

There are numerous approaches to capture observations about the user attention; e.g. within the European projects Nepomuk (2006), Aposdle (Lindstaedt, et al., 2006), Gnowsis (Sauermann, 2005) as well as others (Völkel & Haller, 2006), (Holz, et. al., 2006), (Braun & Schmidt, 2006), (Garofalakis, et al., 2006), (Broisin, et al., 2005), (Roda & Thomas, 2006). The focus lies on the classification of the observations according to some predefined taxonomy or ontology. The predefined ontology(ies) usually describes a specific set of activities that is usually related to some task or process. Furthermore, the underlying tasks and processes are also described through pre-configured ontologies. As this works perfectly for the purposes for which the ontologies were made,
the approaches fail when the general and usually less predictable activities of users are to be observed. Therefore, observations that do not fit the classification are disregarded in these systems.

Other approaches focus on capturing observations about the user by monitoring key strokes, mouse gestures, click-streams, etc. These approaches provide a vast amount of data that is highly fine-grained. This fine-grained data is highly valuable to examine how a user used a website (Weinreich, et al., 2006a) or an information system. Nevertheless, it is quite problematic to derive user interest and behavioural patterns from such data. One reason is the noise included in the data (Weinreich, et al., 2006b), the other is that it is not related to the user working contexts. The data is captured without keeping track of and without relating the activities where the content in question was involved in, usually because of its highly granular structure. In addition, this data is provided from one tool without taking the content into account, on which the activities are performed. Therefore, the data cannot really support contextualizing the streams.

Our approach is more general, because it observes the user on the application level instead of the key-stroke level. Furthermore, our approach specifies a common schema in which the observations should be captured. This enables correlating the various application specific data streams and thus contextualizes them.

We have developed the contextualized attention metadata (CAM) schema to capture the observations. Previous versions have been published in (Najjar et al. 2006a,b). It is based on attentionXML (2004), which is an open specification to capture data on how people use information in browsers, web pages, news feeds and blogs. This data is then analysed and provides interested users with statistical information on their interests and activities over time. Furthermore, interested parties use the data to predict trends, to identify trend setters, etc.

AttentionXML is an XML-based schema that groups the captured observations according to users. Each user has one or more feeds that provide her with information. A feed can be a blog, the click stream within a browser, news feeds, etc. thus all information obtained and exchanged through the web asynchronously, therefore without regarding email and chat as observation sources. Each feed has a number of properties attached that can but must not be used, e.g. the title, the URL, etc. Furthermore, some user-specific data is captured like the date and time when it caught the user attention and when the user discarded it, user specific arbitrary tags, voting information, etc. Each feed consists of one or more items which are described through a number of properties such as the global identifier (GUID), the title, when it was last read, when it was last updated, its duration, its MIME type, if the user followed any links within this item, voting data and tags.

AttentionXML is targeted to capture observations of users related to browsing behaviour and information consumption in blogs and news feeds. It therefore does not allow capturing observations related to activities like searching and downloading documents on the web, reading, writing and editing documents, listening to music, communication messages (e.g. chats), etc. Furthermore, it does not allow capturing the context within which an activity took place. We therefore propose an extension to AttentionXML that allows us to significantly broaden the types of observations that can be captured and described and the context where they occur. Our extension enables capturing the type of event (including all relevant properties) that occurs with each item. The type of event allows us to classify the event that belongs to each item. We therefore break the implicit assumption of
AttentionXML up, that each item is either a news-feed, a wiki or blog item. This approach allows us to capture observations about user activities in any kind of tool, not just a browser or newsreader as in AttentionXML. We call the extension Contextualized Attention Metadata (CAM) and explain it in detail in chapter 3.

2.2 Collecting Contextualised Attention Metadata

As outlined above, we aim to collect observations in CAM format from all applications available in the user computer environment. We identify sources along to dimensions: location of the observation generating application and its social type. The location describes where the CAM data is generated, either on the user desktop or at the server-side. The social type describes if the observations relate to the user alone or to his social interactions with other users. For example, the MS Office application or a web browser focus on the user alone, while an email and chat client provides CAM data that describes her social relations to other users. This simple classification is used to identify the various possible types of correlations of observation data streams.

Our main focus, for the moment, is on applications that are used on a daily basis by the user, like MS Office, browsers, etc. Web browser extensions like Slogger (2003) already enable the capturing of the user browsing behaviour in web environments. Tools based on ALOCOM (Verbert, et al., 2005) enable the capturing of CAM data from MS Office tools. Examples of their application are given in chapter 4.

Apart from desktop applications as sources, log files from centralized systems like web search engines, information repositories or virtual worlds like “Second Life” (2006) and online games like Warcraft (2006) provide highly valuable sources for observations about users. Recently, more and more network systems use the open log file format of the Apache foundation. Therefore, we will
map the Apache open log file format to CAM and thus be able to correlate CAM data from desktop applications to CAM data from web-based systems.

The CAM framework is developed, shown in figure 1 to collect, merge and store the various streams of observations in CAM format. Each desktop application (left side of the above figure) generates a stream of observations that captures activities within the application with timestamp and content-related data. These application-related streams are collected and merged into a single stream per user. The CAM format enables therefore the provision of attention metadata streams on a per user basis that is further categorized into the various applications. Merging is therefore rather simply done based on the user category of CAM. Afterwards, the streams are stored in the CAM store.

CAM streams from central systems like web servers (right side of the above figure) leave the user category of the CAM stream empty. These streams are already merged on the application category and can simply be stored in the CAM store.

3. Contextualized Attention Metadata schema (CAMs)

![Figure 2: The CAM schema elements](image-url)
Figure 2 shows the CAM schema developed to allow tracking user activities across different systems. As explained in section 3.2, CAM schema extends the AttentionXML (2004).

The CAM schema is designed to allow tracking user activities in all systems she may interact with while working with documents. As shown in the figure above, CAMs collects user attention in all systems she may work with in one Group element. The purpose of the Feed element is to group the attention of the user in one specific system. The Item element collects the attention given to one specific digital document. Because of the fact that every digital document may be accessed on different occasions and be involved in different tasks (reading, editing, updating, listening to, etc.), it requires capturing information related to every occupation (event) and task in which the document was involved in. As this is not possible in AttentionXML, we extented AttentionXML at the item element level, by adding the event element. Each item may be involved in one or more event that has different relevant information. For example, in one event, the document can be edited in one system and afterwards, in another event, the same document can be read or updated. Note, the same document may also be accessed in another system. Each time a document is accessed, more attention metadata is collected, like access date time, context, duration spent on working with the document and user experience (ranking, annotations and tags). A teacher may use the same document in her online courses for two different groups of students and in two different contexts (time, application, and topic), in each course where the document is used, different metadata information can be collected, like the time spent on learning it, the topic (computer, management, etc.) of the course and the teacher evaluation of the usefulness of the document to each group of students (it might be well perceived by computer science students but not by student who management ones).

Making the event element central in CAM schema allows the identification and relation of information about every event the document was involved in across different systems. As also shown in figure 3, in the CAM schema the elements duration, votelink, XFN and tags are moved from the item element into the event element. This reordering enables the identification of the duration spent with the document, tags given to the document by the user, social relationship and user experience (votelink; like-dislike information) per event.

We will now describe the Item element and its sub-elements including the event element, where we extend AttentionXML, and its major sub-elements. As mentioned earlier, the group element groups all attention metadata of one user in all applications she may work with (all in one group instance) while the feed element groups the attention of one user in one specific tool (each tool in a separate feed instance). The group and feed elements of CAM schema and their sub-elements are the same as in AttentionXML and therefore will not be further explained.

- **Item**: The element groups attention metadata of one document. Each document can be involved in different actions (read, listen to, edit, etc.), in different dates, for different periods, and in different contexts.

The item element has three sub-elements that do not change over the different actions and events the document may be involved in; those elements record the proprieties of the document itself. The data is collected here to recognize and identify the document across different systems and contexts:
On the other hand, all data about the different events the document may be involved in are grouped in the event element. This data describes the attention given to the document, like the time spent with it, tags attached to the document after reading it, and the context where it was used. Each event related data is grouped in one event instance.

- **Event**: The element group’s attention metadata of each event the document was involved in. For every event instance the following attention metadata is collected:
 - **Action** element provides information on the action that the document was involved in (e.g. if it was inserted into local file system or digital repository, opened in a viewer application, etc.):
 - **Action Type**: the type of action (task) the document was involved in. Its value is normally a reference to a value in action value space. For example, the URL `http://.../Actiontype/insert` can be a reference to the insert value if the action was inserting a document into a repository.
 - **Entry**: this element records data related to the action performed. About the same action one or more entries can be recorded. For example, if the document was found using a query, one instance of the `entry` element can store the query terms used by the user to form her query. Another entry can store the results list of that query. In case of insertion, it also records the name of metadata schema (for example IEEE LOM or Dublin Core) used to index the document. If the action was chat conversation with other person, this element can store name of the chat partner in one entry instance and the text of the conversation in another entry instance.
 - **Date Time**: It captures the date and time at which the event took place. Unlike the `item.lastread` element in AttentionXML, this element keeps all timestamps of events where the document was involved.
 - **Duration** element records the time spent with the document (in seconds).
 - **Session** element holds the information that is needed to identify the working session.
 - **SessionID**: a unique identifier for the session.
 - **IP Address**: the IP address of the user computer.
- **User Info**: this element collects information about the User Name, Email address and scientific Discipline of the user performing the action.

The session information (sessionId and IP address) are used to identify the user throughout the different events and tasks she may interact with the document. The data about the user is collected per event because the same user may have, for example, different user name, IP address every time he works with the same document. Working with a document from the computer at work or at home may result in different IP addresses of the same user.

- **Context** this element captures information that describe the environments the user may interact with. For example, information about a course (discipline and description) where a user has uploaded a document. For example, title and description of a course about Human Computer Interaction in the Blackboard (2006) or Moodle (2006) systems are contextual information about the usage of a document. Data captured here can be extracted from the properties of the courses where the documents is used; each course in Moodle, for example, has a title and description, this data can be used to extract this information about the context. This data is essential to identify the different contexts where digital content is used. This element has two sub-elements:
 - **Value**: A free text that is extracted, for example, from the title of the course in applications like Moodle or blackboard. It describes the topics of other documents involved in working with the recent document, e.g. the topics of all documents involved in a course. This element takes multi string value description entries. Those string entries can be used to express the same value in more than one language.
 - **Value Type**: A reference to an element of an ontology or taxonomy that describes the discipline as derivable from the value element above. The topics might serve as search terms to identify the appropriate discipline with online services like Swoogle (Ding. Et al., 2004).

In addition to the information captured in the above two elements about the context where the document is used, more contextual information can be extracted from other elements described earlier. For example, `event.datetime`, `event.action.actiontype` and `event.session.userinfo.discipline` are rich contextual information. Such data enable identifying interesting patterns about user attention given documents. For instance, using the element `event.action.actiontype` we know if the user is browsing a webpage, working with power point slides or listing to music, or may be all at the same time. This data can, for example, enable identifying the songs that the user listens to when working with MS PowerPoint from those when browsing the web. Using the `event.datetime` element it’s possible to know the music a user listens to in the morning from the music she listens to in the evening. In addition, it is also possible to identify the web pages that a user consults when working with power pint slides.
• **Followed Links:** This element groups the set of URIs included in the document and followed by the user. This can be a link to a relevant webpage of a document that is currently read by a user.

• **XFN:** This element tracks the social relationship of the author of the document to the reader consulting the document, if the value of `event.action.actiontype` element is read in a web browser application. In chat tool, for example, it can also record the user relationship to the other person involved in a chatting event.

• **Vote Link:** This element records the user interest (likes and dislikes) in the document. This element can take one of the following values:

 - Vote-for: means “I like the document.”
 - Vote-abstain: means “I have neutral opinion.”
 - Vote-against: means “I did not like the document.”

 This data can be used, for example, to recommend a user with documents that are similar (of similar author for instance) to the documents that a user voted positively. Documents that are similar to the vote-against documents can be hidden from the user. More interestingly, this data can be used to rank the document based on the votes of a set of users. If many users voted for one specific document, this means that the document is interesting.

• **Tags:** A free text label or keywords that is used to describe the document. For example, attention metadata, user data and user tracking are valid tags for this paper.

• **Description** element covers descriptive annotations that might be provided by users to express their experience with the document. It uses the value space of IEEE LOM Description element which is a multi string value, to allow providing the same information in different languages. This element is useful to collect reviews or descriptive data about user experiences about the read item. Some users are interested in annotations other users provide to digital content.

• **Other:** This element is used to allow providing customised elements that are not covered by this schema.

In the next section, we illustrate how attention metadata is collected in four applications using the CAMs schema.

4. **Case Study**

In this section, our case study explains how attention metadata is collected from four tools and then managed in an attention repository. The respective tools providing CAM data are Microsoft PowerPoint, Mozilla Firefox browser, WINAMP music tool and MSN Messenger. As explained in section 2, these four tools cover four categories of applications (office suite, web browsers, multimedia players and computer-mediated communication respectively) that are used on a daily basis by users. Therefore, collecting and merging user attention from those tools enables building a
Figure 3 illustrates the technical framework of this case study. For Microsoft PowerPoint, we generate attention streams directly in CAMs XML format using the ALOCOM framework (Verbert, et.al., 2005). In the other three tools (right side of figure 3), Mozilla Firefox, WINAMP and MSN Messenger, attention streams are first stored in the local XML formats of each application then transformed into CAMs XML instances.

In Firefox attention metadata is collected in the Slogger XML format, using the open source Slogger extension (Slogger, 2003). In the MSN Messenger, there is no need to install an extension to record user activities. MSN Messenger provides the tracking functionality build in: a user can simply enable or disable the logging of her messages. All user activities are logged in an MSN XML format. For WINAMP, a plug-in that was developed by (HMDB, 2006) to track user activities in WINAMP is used to collect usage information about user music activities. This data is also stored in a local XML format before transformed to CAMs.

In order to manage the attention streams in one place, we developed a component that uploads all CAMs valid streams (stored in folders on the user hard disk) into an XML database that is also installed at client side.

In the next sub-subsections, the recording of attention metadata in each of the tools shown in the figure above is described.
4.1 Generation of Attention Metadata in MS PowerPoint

The ALOCOM plug-in for MS PowerPoint supports capturing attention metadata from the users and the slides with which they work. The Microsoft PowerPoint .Net API (Khor, 2005) is used to extract properties from slide presentations such as the title, the author, the total editing time and the last save time, and to capture different events (open, save, print…). Other properties such as the username and IP address are retrieved using the System.Environment and System.Net class libraries.

Figure 4: Part of one user CAMs instance
Furthermore, ALOCOM supports searching-for and repurposing existing documents (slides, images, text fragments, etc.). A user can specify the type of document component she is interested in (e.g. slide, diagram, table, image, text fragment), as well as keywords that best describe the component. All components that satisfy the specified search criteria are shown and the author can easily incorporate them into the presentation she is working on. Attention metadata relevant to those actions is captured directly into CAMs instances.

As shown in figure 4, all user attention information in PowerPoint is grouped in one Feed instance (see 1 in figure 4). Data about every document (accessed slide presentation) is grouped in one Item instance (see 5 in figure 4). For every accessed document, the following CAMS elements are captured:

- **Title**: The title of the presentation. The Microsoft PowerPoint API (Microsoft.Office.Interop.Powerpoint assembly) is used to retrieve this property.
- **GUID**: an identifier that is generated by the ALOCOM framework.
- **Type**: the MIME type of the document; application/powerpoint.
- **Last updated**: The timestamp of last save time (Built in document property of the presentation document - "Last Save Time").
- **Duration**: The period of the total editing time in seconds. Its value is extracted from a built in document property of the presentation document; “Total Editing Time”.
- In the two events numbered 6 and 7 (shown in figure 4), attention metadata about the user interaction with the document in each event is recorded in a separate event instance. In the first event (6 in figure 4), the action “search” is recorded in the Action Type element. Data related to this “search” action is stored in the Entry element instances (see 8 in figure 4). This entry has two sub-elements; the name stores the Name element of the content to be stored- “querytext”. The Content element stores the real content of the related data of the search action; search terms used to search for the document. In the second event (see 7 in figure 4), the action element stores data about a user activity of inserting a text fragment into the slide. This text fragment is found using the ALOCOM plug-in. For this action the identifier of the document is stored in an entry element of action related data (see 9 in figure 4).
- **Sessions** (see 10 in figure 4):
 - Session identifier: hash code of the time stamp
 - IP address: The System.Net API is used to retrieve this property.
 - Username: The System.Environment API is used to retrieve this property.
- **Date time**: time stamp of the event. This time is used to identify the different events that a document can be involved in.

The data recorded is data about either the document itself (e.g. title, MIME type, GUID) or about the user (session-id, IP address and user name). The reason for capturing the data is two-fold: to be able to recognize the documents and the users who worked with them. Furthermore, to identify and relate (using the **datetime** and **session information**) the events where a user may have worked with each document.
4.2 Collection of Attention Metadata from the Firefox Browser

Figure 4 also presents part of an attention stream from using the Firefox browser. As described in the previous section, all Firefox attention streams are grouped in one Feed element (see 2 in figure 4). This example shows the user attention given to web pages (items) she accessed while working on preparing a Human Computer Interaction lesson. The user has accessed a set of learning objects (figure 4 shows attention given to only two accessed pages). The first learning object is a paper about the design of buttons in interface design. The second learning object is a link to a book by the author of the paper.

In this context, the following elements of the CAM schema for each accessed web page are captured in the Firefox browser, using the Firefox Slogger extension. For each page (item), the following information is captured.

- Title: title of the accessed document (page). For example, see 2 in figure 4, the title of one webpage about the design of buttons in the interface design by Alan Dix is recorded.
- GUID: the primary URL of the webpage.
- Date time: the timestamp of access time.
- Type: the MIME type of the document.
- Tags: user tags given to the accessed webpage, free text tags in a folksonomy (Gruber, et al., 2004) approach. These tags can be provided as labels in Firefox Slogger.
- Description: In this element we collect annotations that reflect the user experience with document.
- Followed links: the links to web pages (or any other documents) the user followed from the current web page; the navigated links get recorded as new items with their relevant attention data. By tracking and relating those followed links, relationship models between documents can be built. This data supports determining the user navigation and reading patterns and can be used to build relations between the accessed documents. For instance (see 2 in figure 4) while reading the paper about the design of buttons in interface design by Alan Dix, the user followed the link to Alan Dix book “HUMAN-COMPUTER INTERACTION” which is available as a reference in the webpage the user was initially busy with.

The data recorded in this case helps determine the reading pattern of the user and determine the topics he is interested in. This can be achieved, for example, by extracting popular keywords from titles and URLs of accessed web pages in addition to extracting them from the annotations (recorded in description element) and tags a user may attach to those pages after reading them.

4.3 Collection of Attention Metadata from WINAMP Music Application

Data about the attention given to music files are captured using an attention plug-in developed by to visualize user attention in the WINAMP application. The following elements of the CAM schema are captured (see 3 in figure 4) for each accessed music item (file).
• Title: title of the accessed document (music file) which is in general the name of the accessed song generated by the used music attention plug-in.

• GUID: the primary URI of the accessed document. In this case study we used the combination of title of the song and the artist as an identifier to each document. Both values are generated by the used music attention plug-in.

• Date time: timestamp of the event.

• Duration: the time duration the document was played.

• Action:
 o Action Type: The type of action that was applied on the song. For example, “play” if the user played the song. While action like “volume up” and “volume down” can also be recorded. However, the plug-in we used in this case study does not log such detailed data.
 o Related Data: here, we can use this element, for example, to store data about the artist, album or the genre of the played music. In case of the volume up/down actions, this element can store the relevant values.

Data logged about user attention given to the songs he listened to is a rich source of information that can enable building a music user profile. This profile represent the user quite precisely, because it is created based on the songs she actually played and the time she spent on listening to them. For example, the user may listen to the full song in her play list (e.g., 4:23 minutes); the actual length of the song can also be retrieved using the music attention plug-in. On the other hand, the same user may listen to only the first minute of the second song on the same play list. This data enables us to determine:

• The genre of the songs the user listens to. Also, what kind of music he listens to in different periods of the day.

• The artists she likes most because she listens most of the time to their songs.

• The songs the user skips at her play lists. This can be derived from the duration the song is played and the actual length of the song.

Using the above data, it’s possible to determine the genre of music the user listens to when she works on different daily tasks. This can be achieved by combining the music attention of one user with her attention in other applications. For example, combing the Firefox attention data with the music attention of the same user specifies the kind of music the user listens to when reading a specific type of web pages, e.g. news pages. It is also possible to determine the kind of music the user listens to when she chats with her colleagues or when assembling course material in Microsoft PowerPoint or other applications.

4.4 Collection of Attention Metadata from MSN Messenger

As mentioned earlier, the attention metadata is extracted from the MSN Messenger’s XML log files (local format) stored on user hard disk. Mapping the collected data into CAMs is different to the previously stated examples of MS PowerPoint and the Firefox web browser. In this case we deal with contacts (users) and messages only. In the previous tools, the focus was on documents that are
accessed by users who are involved in different events. Here, the focus is on users who are involved in chat events; the chat messages themselves are the documents the users interact with. Therefore, we mapped the data as follows:

- Item element groups all chat events that a user has with one specific contact (user).
- Event element groups the messages that occurred in one MSN session. A session in MSN Messenger ends by the time a user closed the chat window with the other chat partner.
- Every exchanged message text is stored in a separate entry under the `event.action.relateddata.content` element. In this case, the value for `event.action.relateddata.name` is “messageText” and the value “chat” is stored in `event.action.actiontype`.

4.5 Management and Usage of Attention Metadata

So far we discussed the collection of attention metadata from different applications. The attention streams of the four tools in this case study are merged into one XML stream using the `group` element (see figure 4). Each tool’s attention metadata is represented in one feed instance. The whole CAMs XML document representing the user attention metadata is stored in an Exist database (Exist, 2006). XQuery statements are used to identify and relate the different attention streams and group them into one document which is exemplified below.

```xquery
xquery version "1.0";
{
  for $i in 1 to 10
  let $x := distinct-values(collection(// CAM financier)/feed/item/title = "")/events/event/datetime
  order by $x descending
  return distinct-values($x/.../guid)
  return
    <table id="collection(// CAM financier)/feed/item[guid eq $x[8]]/.../title[desc]">
      
      <tr>$x := collection(// CAM financier)/feed/item[guid eq $x[8]] return
      distinct-values(collection(// CAM financier)/feed/item[guid eq $x[8]]/title[desc])
      
      <tr>$x := collection(// CAM financier)/feed/item[guid eq $x[8]]/events/event/datetime return
      $x[desc]"
    </tr>
  </table>
}
```

Figure 5: An XQuery script to retrieve last 10 documents a user worked with

Figure 5, presents an XQuery example that lists the 10 last documents a user worked with in the four applications.

The script identifies the last 10 documents that a user worked with in all applications (using the datetime element, see 1 in figure 5). Then it lists the titles and access time of every relevant document (see 2 in figure 5). As can see, the query runs against the CAM collection (XML folder) where the XML CAMs document is stored.
The next step is making use of the collected rich attention metadata that tracks what a user was giving attention to and interested in. The first obvious usage for this data is building a user attention profile that represent user actual interest based on her previous interaction with different tools and the documents he worked with. In order to achieve, users and documents need to be identified among different applications.

Identifying the user in this case study (desktop applications) is not a problem, since the client XML repository stores only the data of one user. Even if more users would store their attention metadata in the repository, the group element would allow the clear identification of each user. Here, we will consider each document with unique identifier a user worked with as a different document.

Figure 6: Screenshot of the Attention Monitor tool

Figure 6 shows a screenshot of our simple demo tool that explores general information about user attention. The figure shows the last 10 documents (see 1 in figure 6) in the four tools that the user gave attention to. At the left side of the tool, the keywords that represent the user interest are shown (see 2 & 3 in figure 6). Those keywords are extracted from the following elements captured about each document the user worked with in the four tools:

- Title of document.
• Descriptions a user give to accessed documents, using the \textit{event.description} element
• Tags a user may attach to accessed documents, using the \textit{event.tags} element.
• Action Related data, data about search terms a user used to find relevant information. Artists of songs, chat text messages, etc, using the \textit{event.action.relateddata} element.

As shown in figure 5, the popular keywords represent user interest. The last documents used by the user tracks the tasks the user was involved in and with what documents. The data enables building user attention and interest profiles. Such profiles can later be related to other peoples’ profiles. For example, the profile keeps information about the tools that a user frequently uses, the time spent (duration) in those tools and the respective documents, the datetime a user access the tools and documents (datetime), the courses the user work on and the keywords that represent her interest.

As mentioned earlier this profile of user attention represents user attention and interest across different systems. By mining the collected information from the different tools, the profile can hold information about user musical pattern, for example, “whenever a user works in Microsoft Power Point she listens to Classic Music, while she listens to Rock music when browsing the web.” Another pattern can be “website X and Y are accessed in about 80% of the times a user starts a new slide presentation in Microsoft PowerPoint” or “Slides X and Y are reused in about 85% of user created presentations.” Such patterns can be used to alert or recommend relevant information or documents based on the interest or task that the user is currently working on. Furthermore, such patterns enable the visualisation of user activities and attention to easily generate work reports.

5. Conclusions and Future Work

One of the main problems today is the large amount of information that teachers and learners need to deal with on a daily basis. We aim to use observations about the user and her attention to help her digesting the information flood. This paper extends and builds on our earlier work on attention metadata. In (Najjar, et al., 2005), a simple conceptual attention metadata framework that uses the AttentionXML schema to capture attention metadata in learning systems is proposed. In (Najjar, et. al., 2006a), an extension for AttentionXML schema is proposed, to enable collection attention metadata from different sources. In (Najjar, et. al., 2006b), the use of attention metadata for enhanced learning was discussed. In (Wolpers, et. al., 2006), the use of attention metadata in knowledge management systems is discussed. In this paper, we present the stable version of the schema, which enables collection of contextualized attention metadata across systems boundaries, with a detailed explanation of its components and their use as well as a sample application demonstrating first correlation examples.

We start with the collection of contextualized attention metadata that describes in detail in which context a user spends her attention on which content. We therefore propose a conceptual framework and the contextualized attention metadata schema that enables the recording and management of rich and detailed sets of data about user attention given to learning documents in different applications. As a case study, we generate attention metadata from a number of desktop applications like MS PowerPoint, WINAMP, MSN messenger and Firefox and show in a demo application a time-based
sequence of activities. Such correlations of contextualized attention already indicate how useful it can be for specific users, e.g. for personalization and information management in the learning context.

Future work includes the collection of more attention metadata from several applications to form a rich and large base of attention metadata about users. Based on this repository, we will develop further algorithms to extract knowledge about the user, the context and the content. A simple example is statistical data about the usage of learning documents. Advanced examples the identification and extraction of patterns of behaviour, e.g. though the correlation of activities carried out by one user and related to one context and/or one content. In addition, the clustering of users based on observations about their behaviour in certain contexts provides information about the sequences of activities carried out by users. Such clusters would then allow the generation of recommendations of similar users, eventually combing them with the behavioural patterns to more precisely identify next steps. Ultimately, behavioural patterns and similarity measures among users can be used to detect the finalization of user goals and, subsequently, the identification of user aims and goals.

In parallel to the collection of large amounts of attention metadata, an empirical evaluation study will be conducted to determine the usefulness and efficiency of attention metadata in facilitating the user tasks, and in enhancing user experience with the tools she works with. However, the evaluation of such systems is a big challenge because attention metadata is about detailed information about user behaviour and interest. Therefore, the evaluation will be designed to determine the efficiency of the contextualized attention metadata approach, the used schema and framework. Furthermore, we will conduct some research in applying existing solutions to the privacy and security issues at hand when dealing with this highly personal data. An example of our evaluation approach is the determination of the difference in task completion, before and after using attention metadata-supported systems. In addition, interviews and questionnaires may be used to determine the user satisfaction with the attention-supported systems; like comparing information retrieval attention-supported systems against current systems.

The CAMs schema presented in this paper is now being implemented in a number of European projects like MACE (2006), MELT (2006) and AKNOLEDGE (2006). The schema will be used to facilitate the collection, management and exchange of user attention metadata form different tools in those projects. By applying the schema in these projects, we will be able to identify further research questions related to contextualized attention metadata

6. References

