

Mobile Visual Scene Understanding in Highly Dynamic Environments

Bastian Leibe

Mobile Multimedia Processing

Computer Sciences 8 - Computergraphics & Multimedia

RWTH Aachen

MIRACLE Workshop, St. Augustin, 30.10.2009

RWTHAACHEN UNIVERSITY

RWTH Computer Graphics & Multimedia Group

- Prof. Dr. Leif Kobbelt
 - Computer Graphics
 - Geometric Modelling

- Prof. Dr. Bastian Leibe
 - Computer Vision
 - Machine Learning

B. Leibe

RWTHAACHEN UNIVERSITY

Research Focus: Mobile Vision Applications

Three main scenarios

Mobile phones, Wearable computing

Mobile robotics, Personal mobility

Intelligent vehicles

On-board computation

Unrestricted environment

Research Directions

- Mobile Visual Search
 - Recognition from mobile phones
 - Automatic content creation
 - Towards mobile AR applications...

- Mobile Object Detection and Tracking
 - Object categorization
 - Scene geometry estimation
 - Multi-person tracking
 - Detailed body pose analysis

Target Scenario: Pedestrian Navigation

Mobile visual search

- Simply point the camera to any object/building of interest.
- Images are transmitted to a central server for recognition.
- Object-specific information is sent back to be displayed on the mobile phone (mobile AR).

System Overview

 How can we make this scalable for an entire city?

RWTHAACHEN UNIVERSITY

World-Scale Mining for Content Creation

Example Results: Famous Tourist Sights

http://en.wikipedia.org/wiki/Basilica_of_the_Sacr%C3%A9_C%C5%93ur 426 Elements, 233 users, 287 days. Precision: 100%

http://en.wikipedia.org/wiki/Tour_Montparnasse 40 elements, 10 users, 11 days. Precision: 100%

B. Leibe

http://en.wikipedia.org/wiki/Notre_Dame_de_Paris 588 elements, 287 users, 334 days. Precision: 100%

[Quack, Leibe, Van Gool, CIVR'08]

RWTHAACHEN UNIVERSITY

Example Results: Matching Under Occlusion

http://en.wikipedia.org/wiki/Old_Town_Square_(Prague) 262 elements, 122 users, 195 days. Precision: 98%.

http://en.wikipedia.org/wiki/Colosseum
582 elements, 190 users, 252 days. Precision: 100%
B. Leibe | Quack, Leibe, Van Gool, CIVR'08]

Research Directions

- Mobile Visual Search
 - Recognition from mobile phones
 - Automatic content creation
 - Towards mobile AR applications...

- Mobile Object Detection and Tracking
 - Object categorization
 - Scene geometry estimation
 - Multi-person tracking
 - Detailed body pose analysis

Joint work with: Andreas Ess
Stephan Gammeter

Luc Van Gool

(ETH Zurich)

(TU Darmstadt)

Konrad Schindler

B. Leibe

Towards Visual Scene Understanding

Objectives

- Detect & track people in environment
- Interpret their motion
- Predict their future behavior

Challenges

- We are moving
- > Objects are moving
- > Significant occlusions

Towards Visual Scene Understanding

Objectives

- Detect & track objects in environment
- Interpret their motion
- Predict their future behavior

Challenges

- We are moving
- > Objects are moving
- > Significant occlusions

Integration Principle: Cognitive Loops

Integrate different vision modalities through Cognitive Feedback

Outline

- Object Recognition
 - Implicit Shape Model (ISM) approach
- Integration with Scene Geometry
 - Coupled object detection & 3D estimation
- Temporal Integration
 - Multi-hypothesis tracking-by-detection
- Visual Odometry
 - Feedback from detection and tracking
- Putting It All Together...
 - Mobile pedestrian tracking
 - > Articulated tracking under egomotion

Object Categorization & Detection

ISM Object Detection

[Leibe, Leonardis, Schiele, IJCV'07]

Pedestrian Detection in Crowds

[Leibe, Seemann, Schiele, CVPR'05]

Outline

- Object Recognition
 - Implicit Shape Model (ISM) approach
- Integration with Scene Geometry
 - Coupled object detection & 3D estimation
- Temporal Integration
 - Multi-hypothesis tracking-by-detection
- · Visual Odometry
 - Feedback from detection and tracking
- - Mobile Pedestrian Tracking
 - > Articulated tracking under egomotion

Scene Geometry Estimation

- Goal: Find the ground plane
 - Restrict object location
 - Assume Gaussian size prior
 - ⇒ Significantly reduced search space

Structure-from-Motion

Dense stereo

RWTHAACHEN UNIVERSITY

Detections Using Ground Plane Constraints

left camera 1175 frames

Object & Ground-plane Reasoning

Probabilistic combination in Bayesian network

Groundplane π

Object detections O_i

Depth measurements d_i

Groundplane measurements

Object detections (ISM)

Depth verification

Object & Ground-plane Reasoning

- Effect:
 - Reliable detections from scene context
 - Accurate 3D positioning from depth map

Outline

- Object Recognition
 - Implicit Shape Model (ISM) approach
- Integration with Scene Geometry
 - > Coupled object detection & 3D estimation
- Temporal Integration
 - Multi-hypothesis tracking-by-detection
- Visual Odometry
 - Feedback from detection and tracking
- Puting It All Together...
 - > Mobile Pedestrian Tracking
 - Articulated tracking under egomotion

Coupled Detection and Tracking

(Quadratic Boolean Optimization)

Multi-Object Tracking by Detection

Multi-Object Tracking by Detection

- Multi-hypothesis tracking with model selection in each frame
- Ability to recover temporarily lost tracks

Dynamic Scene Analysis

[Leibe, Cornelis, Cornelis, Van Gool, CVPR'07]

Application: Augmented 3D City Model

Enhancing your driving experience...

Original

3D Reconstruction

Outline

- Object Recognition
 - > Implicit Shape Model (ISM) approach
- Integration with Scene Geometry
 - > Coupled object detection & 3D estimation
- Temporal Integration
 - Multi-hypothesis tracking-by-detection
- Visual Odometry
 - > Feedback from detection and tracking
- - Mobile Pedestrian Tracking
 - > Articulated tracking under egomotion

Visual Odometry

- Defines common coordinate frame
 - Basis for tracking-by-detection in 3D
- Stereo-based Structure-from-Motion
 - Similar to Nister et al., CVPR'04

Feedback to Visual Odometry

- Not all parts of scene are static
 - Detector / Tracker give semantic information
 - Mask out moving parts
 - ⇒ Restrict localization efforts to static parts

Feedback to Visual Odometry

Standard VO
Failure detection, no masking
Failure detection + masking
33

Outline

- Object Recognition
 - Implicit Shape Model (ISM) approach
- Integration with Scene Geometry
 - Coupled object detection & 3D estimation
- Temporal Integration
 - Multi-hypothesis tracking-by-detection
- Visual Odometry
 - > Feedback from detection and tracking
- Putting It All Together...
 - Mobile Pedestrian Tracking
 - Articulated tracking under egomotion

Mobile Tracking Through Crowds

An Extreme Case...

Predicting Behavior of Dynamic Obstacles

Application in Cars

(Cooperation with Toyota Motor Corporation)

Multi-Person Tracking as new Basic Unit

Many interesting ways to go on from here...

Recovering Articulations

- Idea: Only perform articulated tracking where it's easy!
- Multi-person tracking
 - Solves hard data association problem
- Articulated tracking
 - Only on individual "tracklets" between occlusions

Articulated Multi-Person Tracking

- Multi-Person tracking
 - Recovers trajectories and solves data association
- Articulated Tracking
 - Estimates detailed body pose for each tracked person

Articulated Tracking under Egomotion

- Guided segmentation for each frame
 - No reliance on background modeling
 - Approach applicable to scenarios with moving camera
 - Feedback from body pose estimate to improve segmentation

Typical Failure Cases

- Too big pedestrians
 - Not completely visible
 - Separate detector necessary
- False positives on reflections, trees, trashcans, ...
 - Multi-class detector?
 - > OK for path planning: in most cases, still an obstacle

Keys for Success

- Bayesian network for detection
 - Allow modification of bounding boxes
 - Use of confident depth information
 - No hard decision about ground plane
 - Spatial prior from tracker
- Multi-hypothesis tracking
 - Per-frame model selection
 - Depth information for localization
 - World-coordinate frame from visual odometry
- Visual Odometry
 - Feedback from Tracking/Detection
 - > Failure detection

Conclusion

- Visual scene understanding
 - Vision is becoming feasible in the real world.
 - Many individual components are getting sufficiently mature.
 - Robust performance possible through combination.
- Perspective for Augmented/Mixed Reality
 - Currently still restricted to high-power hardware...
 - But real-time reachable within next 2 years.
 - Novel capabilities for AR applications?
 - Object categorization
 - Reaction to people
 - Augmenting categorical objects
- What use can we make of this for AR/MR applications?

Thank you very much!

Collaborators

Local Features

- K. Mikolajczyk
- N. Cornelis
- T. Quack

Obj. Detection

- E. Seemann
- M. Fritz
- A. Thomas
- A. Lehmann
- K. Mikolajczyk
- A. Leonardis
- B. Schiele

Tracking

- K. Schindler
- A. Ess

Body Pose Est.

- T. Jaeggli
- S. Gammeter

SfM & Stereo

- N. Cornelis
- K. Cornelis
- A. Ess
- T. Weise

System Integr.

- A. Ess
- K. Schindler
- L. Van Gool

http://mmp.rwth-aachen.de

Timing

- C/C++ implementation
 - Without detector currently 3-4 fps
- Many calculations can be cached
- Detector current bottleneck
 - Faster detectors can be plugged in (e.g. fastHOG on GPU)
 - > Parallelization possible

Component	CPU	GPU	Time
Detector	×		2 x 15s
Depth map	×	×	15s / 0.020s
Bayesian Network	×		0.200s
Visual odometry	×	×	0.020s
Tracking	×		0.100s

(per frame)

Large Datasets Available

ICCV'07 Data

- 4 Sequences
- ~2200 frame pairs total
- ~10,900 Pedestrian annotations
- Cameras + groundplane from SfM
- Various baseline performances

CVPR'08 Data

- > 3 New sequences
- ~2750 additional frame pairs
- Pedestrian annotations (every 4th frm)
- Camera + groundplane from SfM
- Various baseline performances

Mobile Multi-Person Tracking in Highly Dynamic Environments

Bastian Leibe

Mobile Multimedia Processing Computer Sciences 8 - Computergraphics & Multimedia RWTH Aachen

MIRACLE Workshop, St. Augustin, 30.10.2009

Visual Scene Understanding in Highly Dynamic Environments

Bastian Leibe

Mobile Multimedia Processing Computer Sciences 8 - Computergraphics & Multimedia RWTH Aachen

MIRACLE Workshop, St. Augustin, 30.10.2009

RWTHAACHEN UNIVERSITY

89