
Model Checking Smart Contracts for Ethereum

Thomas Osterlanda, Thomas Rosea,b

aFraunhofer Institute for Applied Information Technology FIT, Schloss Birlinghoven, 53754
Sankt Augustin, Germany

bRWTH Aachen, Ahornstraße 55, 52074 Aachen, Germany

Abstract

The striking characteristics of smart contracts is that no entity can manipulate

their execution. However, in case there is an error in the implementation of

the smart contract this beauty turns into a beast. Updating a once instantiated

smart contract is complex and almost impossible. Thus, when signing or initially

instantiating a smart contract in the blockchain one has to be absolutely sure

that the program code works as expected. Especially in cases with risk of major

financial losses.

We are especially interested in checking whether a smart contract meets its

formal specification and how to proof the consistency of interactions among

smart contracts. In this paper we formalize the syntax and semantics of the

Ethereum smart contract programming language Solidity and propose a trans-

lation function that allows the generation of PROMELA models from Solidity

programs. Then we can employ the SPIN model checker for checking program

properties.

Keywords: Model Checking, Blockchain, Ethereum, Smart Contracts, SPIN

1. Introduction

The basic idea of smart contracts is to digitize conventional contracts such

that those can be automatically and independently enforced once they have

∗Corresponding author. Tel.: +49 2241 14 3618; fax +49 2241 14 2080
Email addresses: thomas.osterland@fit.fraunhofer.de (Thomas Osterland),

thomas.rose@fit.fraunhofer.de (Thomas Rose)

Preprint submitted to Pervasive and Mobile Computing December 10, 2018

been specified. In addition, a smart contract standardizes the representation of

contracts and fosters the transparency of its contents. However, there is still5

an unbiased intermediary required [1] for testing the compliance or the cor-

rect execution of contracts. The need for intermediaries change once blockchain

technology is considered. Basically the blockchain becomes the intermediary.

Every interaction with a smart contract, whether originating from an external

actor or another smart contract, results in a transparent and immutable trans-10

action in the blockchain. Thus the execution of smart contracts is transparent

and comprehensible. Furthermore, because of the nature of the blockchain, no

single entity can tamper the execution and manipulate the process.

Smart contracts open a variety of opportunities for different application sce-

narios. For one thing, smart contracts can be used to digitize and automate15

business processes. In a car sharing scenario a smart contract can automati-

cally unlock an IoT enabled car after receiving the required funds and checking

that the driver has a valid driving license. But also machine-to-machine econ-

omy can be elevated to new application spheres, when using smart contracts for

automating business transactions. The autonomous car of the future refuels and20

pays by sending money from its wallet to the smart contract of the petrol sta-

tion. Additionally smart contracts allow the autonomous or semi-autonomous

participation at strongly automated distributed market places, as for instance,

in the case of energy markets, where every consumer is also a producer of energy.

Hence, smart contracts are a key ingredient for implementing flexible business25

networks.

A popular blockchain technology that supports smart contracts is Ethereum.

Since Ethereum is a public blockchain, every person can read the information

stored in the blockchain or can interact with smart contracts residing in the

blockchain. Ethereum needs a mechanism to ensure that no smart contract stalls30

the blockchain by executing an infinite loop for instance. Therefore, Ethereum

requests a fee for any blockchain transaction. It uses the Ethereum currency

ETH for this clearing. So when interacting with a smart contract a transaction

is created that holds a certain amount of money to pay the execution fees.

2

When the money is depleted before the smart contract execution ends it will be35

cancelled.

Smart contracts in Ethereum are written in special purpose languages, as

e.g., Solidity or Serpens. These programs will be translated into Ethereum Vir-

tual Machine (EVM) byte-code and than executed by a stack machine. Cur-

rently Solidity is the most popular and most advanced language for development40

Ethereum smart contracts.

Despite the immutability of program execution due to blockchain technology

there is the danger that this most important feature turns involuntarily into a

disadvantage: Nobody can change a smart contract once instantiated. Since

smart contracts are written in program code, they face comparable problems as45

any software engineering project: Ensuring the correct behaviour of programs.

So when instantiating or signing a smart contract in the blockchain one need to

be absolutely sure that the program code works as expected and that there are

no cases in which other parties can gain an advantage.

This challenge is further compounded by increasing the complexity of smart50

contracts. Decentralized Autonomous Organizations DAO are built-upon smart

contracts. The entire organizational structure and the processes for managing

the transactions across business partners are specified with smart contracts.

Hence, the correctness of implementation is vital for organizations specified as

DAO, i.e. to enable broad usage in situations where different persons need to55

collaborate without actually knowing or trusting each other and with the risk

of high financial losses.

This paper is organized as follows. First, we situate the general notion of

correctness in software engineering and relate major lines of research in Section

2. Section 3 then focuses on existing approaches to verify the correctness of60

smart contracts. We analyze those approaches and demarcate our approach, as

depicted in Figure 1. Basically, we start with a specification of syntactically

well-formed program code via its operational semantics towards a logic-based

model of program flow that can be checked by a model checker. In Section 4

we formalize the subset of the Solidity syntax that we intend to translate into65

3

Figure 1: Schematic Overview of the Verification Process

PROMELA and provide semantics to determine our understanding of what the

execution of a certain Solidity expression means. We additionally introduce the

PROMELA syntax. In Section 5 we provide the problem statement that we are

going to solve and describe our translation function to convert Solidity programs

into PROMELA models. We implemented our approach what is described in70

Section 6 and did a small evaluation in Section 7. We conclude the paper in

Section 8. To just get an overview on the general idea of the approach, the

well-disposed reader can skip the more formal sections: Section 4 and Section

5.

2. Assessing the Correctness75

Software Engineering has witnessed the invention of a variety of methods

for assuring the correctness of programs ranging from dedicated requirements

engineering approaches towards quality assurance of coding. In this context, we

focus on coding.

Finding bugs in program code is certainly not a trivial task. Even the80

methodical testing of small programs can be a challenge. This is proven by the

fact that everybody experiences software in her daily life that has bugs and

4

does not perform as expected. In software engineering one major approach to

improve the quality of software, that means to reduce the number of bugs, is

the application of exhaustive software tests. Thereby aspects of the software85

on different levels are tested. For instance on a low level every single method

is tested with unit tests, while on a high integration level the interaction of

different components is tested. The problem of software tests is that only those

bugs can be found for which tests are created. That means it is only possible to

find those bugs that are within the test coverage, but it is not always possible90

to anticipate every single case that can lead to a software failure.

Alternatively formal verification aims to verify the correctness of software

based on a formal specification. It allows to proof program correctness, i.e. the

absence of bugs, with respect to a formal specification. At first glance this seems

to be a much better approach, but there is still the possibility to make errors95

in the specification and applying formal verification commonly requires much

more effort than employing software tests.

In general there exists two different formal verification approaches: There is

the class of deductive verification methods which use logical calculi to formalize

the desired behavior of a program and apply theorem provers to test whether a100

program meets its specification. The disadvantage of this approach is that the

proving process can become very elaborate and a person who applies deductive

verification needs to deeply understand the program.

Another approach is model checking. The idea behind model checking is

to analyze the program states that a program can reach. A program state105

represents a mapping of program variables to certain values of the corresponding

data type domain. So for instance a program that consists of only one integer

variable has a potential state space depending on the number of values the

integer variables can obtain. Model checking is a potential one-click solution

that allows to test a model that describes the behavior of the program and110

is used to derive the program states while testing those with respect to a set

of properties [2, 3]. In case it finds a violation of the properties it provides a

counter example that can be used to debug the model. Disadvantages of the

5

model checking approach is that the state space to be analyzed can become

extremely large even for small programs. This phenomenon is also known as115

the state space explosion problem.

However, the characteristics of smart contracts running on the Ethereum

blockchain as mentioned in Section 1 seem to encourage the use of model check-

ing. Moreover, the execution of smart contracts is limited by the execution

fees. This can be used to reduce the state space that must be considered during120

verification.

Applying formal verification entails in general an investment of time and

money as well as an extension of the development process of a software project.

It makes only sense in cases where either human lives are at risk or when high

financial investments justify prolonged development periods. Since smart con-125

tract can be used to automate business processes that are instantiated several

thousand times a day or that handle a large amount of value, it appears quite

feasible to invest a part of the development budget into formal verification of

the smart contract to ensure its correctness.

One example of a renowned model checker is SPIN [4], that was used to130

verify the software of the mars vehicle Curiosity [5]. It is developed by Gerard

Holzmann and was initially designed to verify the correctness of communica-

tion protocols. Since then it is used in many different applications in research,

teaching and industry [6]. Models to be checked are represented in the lan-

guage PROMELA and can than be tested against temporal logic expressions135

that either represent the expected behavior of the program or behavior that

must never occur.

Using the SPIN model checker for our purposes, we first have to specify the

formal semantics of Solidity code and its execution on the Ethereum blockchain.

Then, this formal model has to be translated into a PROMELA model before140

model checking can start. Moreover, the conditions that limit the correct exe-

cution boundaries of the smart contract have to be formalized in temporal logic

such that we can test the correctness of the smart contract.

6

3. Related Work

Besides the problem of existing bugs in the program code that might be145

voluntarily or involuntary exploited by signers of the contract there is also the

need to protect against malicious attackers that try to exploit the faulty imple-

mentation to either prevent its correct execution or to gain an advantage in the

process. One popular example where an attacker was able to exploit the incor-

rect implementation of a smart contract is known as the DAO Hack [7]. The150

attacker was able to exploit a faulty splitting mechanism with a stack reentry

attack and thereby captured Ether valued at several million USD. This problem

could have been detected by applying formal verification.

However, the semantics of Solidity - the most prominent programming lan-

guage to implement Ethereum smart contracts and also the language in which155

the popular DAO was implemented - leads programmers to make a certain

class of errors, especially regarding the handling of errors and exceptions [8].

An overview of the security vulnerabilities of the Solidity syntax and resulting

problems is given in [9]. Future versions of Solidity might improve these aspects

to support the developer in implementing more secure smart contracts, but the160

deliberate application of formal verification will increase the security of smart

contracts and thus reduce the risk of their usage.

Formal verification of software in general is not a new subject of research [2],

however, due to the novelty of the blockchain technology - it was introduced in

2008 [10] - the specialized formal verification of smart contracts is relatively new165

and many different approaches are subject of current research: [11] introduced

Oyente an interpreter that analyzes the byte-code of smart contracts based on

symbolic execution. The research results are promising, but at the moment it

does not support the complete EVM language and instead covers a restricted

subset, called EtherLite. Since the approach is not sound its application can170

lead to false alarms as mentioned by [12].

[13] follow an approach to verify smart contracts by translating a restricted

set of Solidity and byte-code expressions into the F* language that is designed

7

to be easily verifiable. To check that an F* program follows its specifications,

SMT (Satisfiability Modulo Theories) solving and manual proofs are required.175

Although the potential is substantially, checking Solidity smart contracts can

require manual proofs and some important language constructs are currently

not supported, e.g., loops.

A similar approach utilizes Why3, a deductive program verifier that inter-

prets a special purpose language WhyML to verify whether a program meets180

its specifications [14]. A Why3 backend that is capable to handle Solidity code

is implemented in the Solidity Web IDE and can be used to verify contracts,

although at the moment there is only a small subset of Solidity expressions

supported.

[15] proposes two different approaches to verify Ethereum smart contracts.185

Path a tries to verify byte-code by utilizing the theorem prover Isabelle and

expressing the Ethereum virtual machine and smart contracts in Higher Order

Logic (HOL). Path b tries to verify Solidity programs. However, this second

path is not yet researched and also path a is at a very early development state

with for our best knowledge no practical results yet.190

[12] propose ZEUS a program that utilizes abstract interpretation and sym-

bolic model checking for verifying the correctness of smart contracts. It supports

the user in creating fairness criteria and employs static analysis to map the fair-

ness expressions to certain states in the program. Solidity is translated into

LLVM (Low Level Virtual Machine) byte-code and automatically injects asser-195

tions based on policies provided. [12] claim that their approach is sound that

means there are no false negatives and that it outperforms Oyente.

Different approaches exist to improve the security and simplify the verifica-

tion of smart contracts by relying on special languages. [16] propose to use logic

based languages to formulate smart contracts, while [17] introduce SCILLA an200

”intermediate-level” programming language. The idea in both cases is to utilize

the characteristics of a language that is easy to verify and to understand and

simplify the development of secure smart contracts. This approach is also sup-

ported by the fundamental work of [18] to fully formalize the semantic behavior

8

of the Ethereum virtual machine.205

Manticore [19] is a symbolic execution tool that supports in its recent version

the analysis of Ethereum Virtual Machine Code. Although the features are

limited yet, it also provides an interface to an EVM disassembler that allows

the reverse engineering of Solidity smart contracts. The tool can be used to

identify problems in Ethereum smart contracts.210

Another tool for analyzing the security of smart contracts is Mythril [20].

It utilizes concolic analysis, taint analysis and control flow checking on the

byte-code level of Ethereum smart contracts. The tool Solgraph visualizes the

control flow of Solidity smart contracts [21]. It generates a dot file from Solidity

files and uses color coding for identifying potential problems as calling external215

addresses or payable methods. However these last tools are rather for visualizing

and supporting the manual analysis process of smart contracts, but cannot be

considered as full-fledged formal verification approaches.

Since a great number of smart contracts dispose of substantial amounts of

Ether, which corresponds to a substantial amount of USD the necessity to re-220

search methods and approaches to ensure the security and correctness of smart

contracts is clearly there. The aforementioned approaches employ symbolic

model checking and deductive program verification for checking the correctness

of smart contracts. They are specialized on detecting problematic code pat-

terns and provide considerable success, what is remarkable demonstrated by225

applying their verification approaches on a large set of smart contract stored in

the Ethereum blockchain. However, no approach uses model checking for the

verification and we are interested in researching how this approach performs on

this tasks. We additionally concentrate on deriving the specified semantics of

a smart contract from its supposed behavior and try to engineer an approach230

that tests a smart contract in the context of other interacting smart contracts.

So we are additionally interested in the consistency of interacting smart con-

tracts. Although most of the intended functionality is not yet implemented this

paper provides the theoretical base of our approach and hopefully encourages

rich discussions.235

9

4. Preliminaries

Pursuing the aim to translate Solidity smart contracts into PROMELA mod-

els, we start by formally defining the syntax and semantics of the subset of So-

lidity expressions that are supported by our implementation. This determines

our understanding of the Solidity semantics and provides a solid base for fur-240

ther research. We also introduce the syntax of PROMELA and elaborate on

its semantics to explain our intentions regarding the design of the translation

function and how the semantics of Solidity and the Ethereum blockchain that

executes the smart contracts is equivalently translated into the PROMELA se-

mantics. We introduce a number of helper function that are basically syntactic245

sugar for clarification and to improve readability of the definitions.

4.1. Syntax Definition of the Solidity Language

We define the syntax of a subset of the Solidity language as a context-free

grammar. Thereby, as many other approaches we support only a subset of the

Solidity expressions. So we do not support inheritance or multiple contracts.250

Also structs and strings are not covered in this first version.

A valid solidity program starts with a pragma definition that specifies the

used Solidity version and consists of one contract that includes an arbitrary

number of variable declarations, mapping declarations, event definitions and

functions. The complete program logic of a Solidity program such as branching,255

assignments and loops is encoded in functions. Currently the supported data

types are restricted to the types bool, unsigned integer, integer and address.

Definition 1 (Solidity Syntax). Let GSol = (NSol,ΣSol, PSol, SSol) be the

context-free grammar describing the partial syntax of a Solidity program as fol-

lows:260

SSol → pragma solidity z1 .z2 .z3 ; C

C → contract α { G }

G → M G| E G| F G| A G| ε

M → mapping (T => T) α ;

E → event α(P) ;265

F → function α(P) F2 { O }

F2 → returns (R) | ε

10

O → i f (B) { O } | O; O270

| while (B) { O } | T α

| A | return B | α ()

A → A2 = B | A2 += B

| A2 -= B | A2 ∗= B275

| A2 /= B | A2++ | A2−−

| ++A2 | −−A2

A2 → T α | V

B → true | false | Z | B && B | B | | B280

| B == B | B 6= B

| Z < Z | Z > Z

| Z ≤ Z | Z ≥ Z

Z → V | z | Z + Z | Z - Z | Z ∗ Z285

| Z \ Z | Z % Z

V → α | α [Z]

R → T | T α

P → P, P | T α | ε290

T → uint | int | address | bool

with z, z1, z2, z3 ∈ Z, α an arbitrary label of the form x1x2 · · ·xn, x1 ∈ {a −

zA− Z} and xi ∈ {a− zA− Z} ∪ N for n ≥ i > 1 and n ∈ N.

In general comments introduced by // or / ∗ · · · ∗ / can be placed at arbitrary295

positions in the program code and will be ignored.

Based on the semantics of context-free grammars we define the set of vari-

ables Varp for a program p holding all the variables that are declared in the

entire program. The set GlobVarp holds those variables that are declared on

contract level, while the set of local variables LocVarp contains the variables300

that are declared within the functions. Thereby a global variable is accessible

in functions but a local variable declared in one function is not accessible from

within another function. However, it is possible to define two variables with

equal name in two different functions.

We additionally define the set of mappings Mapp as the set containing the305

mappings declared in the program p. A mapping must be declared on contract

level. So there exists no local mappings.

11

Definition 2 (Solidity Variable and Mapping). Let GSol = (NSol,ΣSol, PSol, SSol)

be the context-free grammar of solidity programs, ⇒⊆ X+ ×X∗ the derivation

relation following the semantics of context free grammars and X = ΣSol ∪NSol,

while ∗/+ represent the Kleene closure. For T ∈ PSol, p ∈ L(GSol) we define

the set of variables:

Varp = {α ∈ Σ∗Sol | ∃γ1, γ2 ∈ X∗ : SSol ⇒∗ γ1Tαγ2 ⇒∗ p}

For A,G, T ∈ PSol we define the set of global variables:

GlobVarp = {α ∈ Σ∗Sol | ∃γ1, γ2, γ3 ∈ X∗ : (1)

SSol ⇒∗ γ1AGγ2 ⇒∗ p ∧ (A⇒ Tαγ3 ∨A⇒ αγ3)}

The set of local variables is then given by:

LocVarp = Varp\GlobVarp (2)

For M,G, T ∈ PSol the set of mappings is defined by:

Mapp = {α ∈ Σ∗Sol | ∃γ1, γ2 ∈ X∗ :

SSol ⇒∗ γ1MGγ2 ⇒∗ p ∧ (3)

(M ⇒ mapping (T ⇒ T) α;)}

The set of functions Funcp holds all the functions declared in the program,

while the set Constp refers to the constructor of the smart contract that is exe-

cuted at initial instantiation. Within the syntax we do not distinguish between310

a function and a constructor.

Note that in recent Solidity versions a constructor is not longer identified

by having the same name as the contract itself, but by being introduced with

the keyword constructor. In the remainder of the paper we stick to the older

variant. However, there are only minor adjustments necessary to support also315

the new variant.

12

Definition 3 (Function and Constructor). Let GSol = (NSol,ΣSol, PSol, SSol)

be the context-free grammar of solidity programs, ⇒⊆ X+ ×X∗ the derivation

relation following the semantics of context free grammars with X = ΣSol∪NSol,

while ∗/+ represent the Kleene closure. For F, F2, G,O, P ∈ PSol we define the

set of functions:

Funcp = {α ∈ Σ∗Sol | ∃γ1, γ2 ∈ X∗ :

SSol ⇒∗ γ1FGγ2 ⇒∗ p (4)

∧(F ⇒ function α(P) F2 {O})}

For G ∈ PSol the constructor is defined by:

Constp = {α ∈ Funcp | ∃γ1, γ2 ∈ X∗ :

SSol ⇒∗ γ1contract α {G}γ2 ⇒∗ p} (5)

To improve the presentation of the following definitions we introduce a num-

ber of helper functions:

We define the function type that returns the type of a variable. A mapping

a 7→ b is a dictionary that maps a value a to a key b. The function to returns320

the data type of the value b of a mapping.

The function of allows us to recover the function in which a local variable

was defined. As a quick reminder, while global variables are declared on contract

level, that means on an equal level as the functions, local variables are (in our

understanding) always declared within the body of a function.325

Finally we introduce the function body that returns the code from within

a function definition. All these helper functions improve the readability of the

Solidity semantics that we introduce in the following.

Definition 4 (Helper Functions). For a variable declaration Q → T α,Q ∈

{A2, O, P,R} ⊂ PSol and a program p ∈ L(GSol) with α ∈ Varp we define

type : Varp → {uint, int, address, bool}

type : α 7→ γ,Q⇒ T α ∧ T ⇒ γ

13

For a mapping declaration M → mapping (T ⇒ T) α;∈ PSol and a program

p ∈ L(GSol) with α ∈ Mapp we define to : Mapp → {uint, int, address, bool}

to : α 7→ γ,M ⇒ mapping (T1 ⇒ T2) α ∧ T2 ⇒ γ

For a local variable declaration Q → T α,Q ∈ {A2, O, P,R} ⊂ PSol and

a program p ∈ L(GSol) with α ∈ LocVarp, GSol = (NSol,ΣSol, PSol, SSol) and

X = NSol ∪ ΣSol we define of : LocVarp → Funcp

of : α 7→ ζ,∃ γ1, γ2, γ3, γ4 ∈ X∗ :

SSol ⇒∗ γ1function ζ(P) F2 {O} ∧O ⇒∗ γ3T αγ4

For a function declaration F → function α(P) F2 {O} ∈ PSol and a program

p ∈ L(GSol) with α ∈ Funcp, GSol = (NSol,ΣSol, PSol, SSol) we define body :

Funcp → Σ∗

body : α 7→ γ, F ⇒ function α(P) F2 {γ}

Relying on the introduced context-free grammar of Solidity programs, we

are able to derive programs that are not valid Solidity programs. Starting the330

compiling process would result in errors. So we need to constrain the set of So-

lidity programs that can be derived from the context-free grammar of Definition

?? to those programs that are well-defined. In other words a Solidity program

is well defined, if there exists only one constructor, there is a consistency in the

declaration of function return variables, variables and mappings are declared335

before they are referenced and names of variables, mappings and functions are

assigned only once. Definition ?? formalizes these requirements.

Definition 5 (Well-defined Solidity Program). Let p ∈ L(GSol) where GSol =

(NSol,ΣSol, PSol, SSol) be a solidity program and X = NSol ∪ΣSol. We consider

it well-defined, iff it meets the following conditions:340

• There is exactly one constructor: |Constp| = 1

• The constructor has no return variables: ∀ α ∈ Constp,∀ γ1, γ2 ∈ X∗, F2,

14

O,P ∈ PSol

(SSol ⇒∗ γ1function α (P) F2 {O}γ2)⇒ (F2 ⇒ ε)

• Declaration of return values of a function either all in the form 〈type〉 〈name〉

or anonymous only the 〈type〉1 ∀ α ∈ Funcp,∀ γ1, γ2 ∈ X∗, F2, P, T,O ∈

PSol:

(SSol ⇒∗ γ1function α(P) F2 {O}γ2

∧ F2 ⇒∗ returns (p1, · · · , pn),

pi ∈ X∗, 1 ≤ i ≤ n, n ∈ N)

⇒

(∃pi, 1 ≤ i ≤ n, α ∈ Varp : pi = T α

⇒ @ pj , 1 ≤ j ≤ n : pj = T)

∨

(∃pi, 1 ≤ i ≤ n : pi = T

⇒ @ pj , 1 ≤ j ≤ n, α ∈ Varp : pj = T α)

• Variables and mappings must be declared before those are used: ∀ α ∈

Varp,∀ γ1, γ2 ∈ X∗, T, V, Z ∈ PSol :

(SSol ⇒∗ γ1V γ2 ∧ (V ⇒∗ α ∨ V ⇒∗ α[Z]))

⇒ (∃γ3, γ4 ∈ X∗ : SSol ⇒∗ γ3T αγ4 ⇒∗ γ1V γ2)

∨

(SSol ⇒∗ γ3mapping(T ⇒ T) α; γ4 ⇒∗ γ1V γ2)

1 In Solidity return parameters must be defined in the function header:

function 〈name〉 (〈parameters〉) returns (〈return parameters〉){· · · }. Thereby it is

possible to specify these return parameters only by type, which means to return a comma

separated list of values or as named variables. These variables exists in the context of the

function and values can be assigned to it.

15

• There exists no two different functions with equal names: ∀ γ1, γ2, γ3, γ4 ∈

X∗, α ∈ Funcp :

(SSol ⇒∗ γ1function α(P) F2 {O}γ3 ∧ SSol ⇒∗

γ2function α(P) F2 {O})γ4)

⇒ (γ1 = γ2 ∧ γ3 = γ4)

• There exists no two different variables with equal names: ∀ γ1, γ2, γ3, γ4 ∈

X∗, α ∈ Varp :

(SSol ⇒∗ γ1T αγ3 ∧ SSol ⇒∗ γ2T αγ4)⇒ (γ1 = γ2 ∧ γ3 = γ4)

• There exists no two different mappings with equal names: ∀ γ1, γ2, γ3, γ4 ∈

X∗, α ∈ Mapp :

(SSol ⇒∗ γ1mapping (T ⇒ T) α; γ3

∧ SSol ⇒∗ γ2mapping (T ⇒ T) α; γ4)

⇒ (γ1 = γ2 ∧ γ3 = γ4)

• There exist no internal call of functions: @ α ∈ Funcp,@ γ1, γ2 ∈ X∗

SSol ⇒∗ γ1α()γ2

For the rest of this paper we consider every program to be well-defined.

Based on the syntax of a Solidity program we are now able to define the se-

mantic. A semantic definition on the EVM byte-code level - that is the language

interpreted by the Ethereum blockchain and the language Solidity is compiled345

to - is provided in [18]. Since for applying model checking the size of the con-

sidered state space decides about the solubility of the problem, we consider a

Solidity program on an higher abstraction level.

At execution time of smart contracts, we need to consider two different

types of variables. Those that are persistently stored in the blockchain and350

volatile variables that are only available at runtime. In the following we consider

16

variables and mappings that are declared on contract level as persistent values

that are stored in the blockchain and local variables that are declared on function

levels as volatile variables (cfg. Definition ??).

Definition 6 (Solidity State Space). We define the set of persistent values for

a program p ∈ L(GSol) where GlobVar and Map are derived from p as described

in Definition ?? following the grammar definition GSol:

σB : GlobVar ∪ (Map× N)→ Z (6)

and the set of volatile memory variables with LocVar from Definition ?? by

σM : LocVar ∪ {ret} → Z (7)

Initially every variable has the value 0.355

The operational semantic defined in Definition ?? declares how the Solidity

program expressions of Definition ?? can manipulate the states of the program

state space.

The first two derivation rules of Definition ?? explain the semantic of the if

statement. In case the condition B evaluates to true the body of the if statement360

will be executed, otherwise it will be omitted.

For the concatenation of two program expressions we need to consider two

cases: Either the first program translates into another step, then this new step

will be executed next, or the first expression terminates represented by the ↓.

In this case the second program expression will be executed next.365

As for the branching we need to consider two cases for the loop expression

with the difference that we check the loop condition again after executing the

loop body.

In case of a function return we assign the returned value to the special

variable ret. While at a function call, we first determine the function argument370

based on the current program (persistent and volatile) state and then execute

the function body.

The next section covers the handling of assignments. Depending whether

the considered variable is a local or a global variable we assign the value to the

17

corresponding state. Although we only provided the regular assignment it is375

quite obvious how to define the operational semantics of the + =,− =, ∗ =, / =,

increment and decrement operations.

Definition 7 (Solidity Operational Semantic). Let σM , σB the volatile and per-

sistent memory as in Definition ??. We use ↓ to imply that there is no succeeding

operation left and body(· · ·) as in Definition ??. The operational semantic for380

controlling the program flow is defined as follows:

〈B, σB , σM 〉 → True

〈if(B){O}, σB , σM 〉 → 〈O, σB , σM 〉

〈B, σB , σM 〉 → False

〈if(B){O}, σB , σM 〉 → 〈↓, σB , σM 〉

〈O, σB , σM 〉 → 〈O′, σB , σM 〉, O′ 6= ↓
〈O;O, σB , σM 〉 → 〈O′;O, σB , σM 〉

〈O, σB , σM 〉 → 〈O′, σB , σM 〉, O′ = ↓
〈O;O, σB , σM 〉 → 〈O, σB , σM 〉

〈B, σB , σM 〉 → True

〈while(B){O}, σB , σM 〉 → 〈O; while(B){O}, σB , σM 〉

〈B, σB , σM 〉 → False

〈while(B){O}, σB , σM 〉 → 〈↓, σB , σM 〉

〈B, σB , σM 〉 → b

〈return B, σB , σM 〉 → 〈↓, σB , σM [ret 7→ b]〉

α ∈ Funcp ∧O = body(α) ∧ σ′M = σM [q1 7→ p1, · · · , qn 7→ pn]

〈α(p1, · · · , pn), σB , σM 〉 → 〈O, σB , σ′M 〉

The operational semantic for assignments is defined as follows

〈A2, σB , σM 〉 → α 〈B, σB , σM 〉 → b α ∈ GlobVar

〈A2 = B, σB , σM 〉 → 〈↓, σB [α 7→ b], σM 〉

〈A2, σB , σM 〉 → α 〈B, σB , σM 〉 → b α ∈ LocVar

〈A2 = B, σB , σM 〉 → 〈↓, σB , σM [α 7→ b]〉

385

The operational semantic for algebraic operations is given by

〈α, σB , σM 〉 → σB [α] α ∈ GlobVarp

〈α, σB , σM 〉 → 〈σB [α], σB , σM 〉

〈α[Z], σB , σM 〉 → σB [αz] 〈Z, σB , σM 〉 → z α ∈ Mapp

〈α[Z], σB , σM 〉 → 〈σB [αz], σB , σM 〉

〈α, σB , σM 〉 → σM [α] α ∈ LocVarp

〈α, σB , σM 〉 → 〈σM [α], σB , σM 〉

〈Z1, σB , σM 〉 → z1 〈Z2, σB , σM 〉 → z2

〈Z1 + Z2, σB , σM 〉 → 〈z1 + z2, σB , σM 〉

We use→∗ with 〈A, σB , σM 〉 →∗ 〈B, σ′B , σ′M 〉 = 〈A, σB , σM 〉 → 〈A1, σ
1
B , σ

1
M 〉

18

→ · · · → 〈B, σ′B , σ′M 〉 to indicate a transition that comprises multiple semantic

steps.390

This concludes the definition of the operational semantic of a Solidity pro-

gram. Next we introduce the semantics that comes from executing Solidity

programs in an Ethereum blockchain environment. Note that every interaction

with a smart contract in the Ethereum blockchain results in the creation of a

transaction. That means manipulating a value in the persistent memory of a395

smart contract consequently creates a transaction that changes this value. Due

to the nature of blockchain there can be always a partial order established on

the transactions. So the state of smart contract depends on the order in which

transactions were issued, but in particular it will never be the case that two

transactions and by that two instances of the same smart contract are executed400

in parallel.

A transaction is the basic entity of a blockchain and always originates from

an address. We start by defining the address space in Definition 1.

Definition 8 (Address Space). We introduce Addr = Z to denote the set of ad-

dresses and introduce the address balance by σB [a] for σB the persistent program405

state and a ∈ Addr.

A transaction then triggers the execution of a function of the smart contract.

Thereby it is possible to provide arguments to the transaction and in particular

the instantiation transaction calls the constructor of a smart contract and thus

initializes it on the blockchain. Here we omitted the fact that in Ethereum the410

smart contract code itself is also stored on the blockchain.

Definition 9 (Transaction). Let p ∈ L(GSol) a well-defined solidity program

and α ∈ Funcp a function, x1, · · · , xn ∈ Z parameters, a ∈ Addr an address and

σB , σM the program state. A transaction txx1,··· ,xn
a,α is defined by:

txx1,··· ,xn
a,α : 〈α(x1, · · · , xn), σB , σM , a〉 → 〈↓, σ′B , σ′M , a〉 (8)

We denote the set of all transactions with TX.

19

For an address txx1,··· ,xn
a,α the address a represents the sender of the transac-

tion. We omit the address a and write txx1,··· ,xn
α in case the origin address of

the transaction is not important.415

A transaction txx1,··· ,xn
a,α with α ∈ Constp is called instantiation transaction

and is also denoted by txx1,··· ,xn
a,origin . We write txα in case that the function α ∈

Funcp has no parameters.

As mentioned before the transactions that were added to the blockchain

establish a partial order. The transactions that were added to the blockchain420

and target the same smart contract establish a total order. We introduce the step

function that allows the consecutive execution of two transactions and extends

this function to execute an arbitrary number of transactions. We finally define

the transaction history that represents a totally ordered set of consecutively

executed transactions.425

In the context of the real Ethereum blockchain we need to recapitulate that

there exists not only one smart contract in the blockchain but millions of differ-

ent contracts and a multitude of transactions are issued every minute that call

these smart contracts. Although those transactions can be totally ordered, only

those transactions that target the corresponding smart contract are important430

to compute the contract state. So in our case the transaction history represents

all the transactions that lead to a certain smart contract state.

Definition 10 (Transaction Step and Transaction History). Let TX be the set

of transactions, α, α′ ∈ Funcp, p1 = x1, · · · , xm ∈ Z, p2 = y1, · · · , yn ∈ Z

parameters for m,n ∈ N, a1, a2 ∈ Addr addresses and σB , σM the persistent

and volatile memory state. The stepa1,α(p1),a2,α′(p2) : TX → TX function is

then defined by:

stepa1,α(p1),a2,α′(p2) :

〈α(p1), σB , σM , a1〉 → 〈↓, σαB , σ′M , a1〉 (9)

7→ 〈α‘(p2), σαB , σM , a2〉 → 〈↓, σα
′

B , σM“, a2〉

For set of parameters pi = xi1, · · · , xini ∈ Z,m, ni ∈ N, i ∈ {1, · · · ,m},,

20

addresses a1, · · · , am ∈ Addr and functions α1, · · · , αm ∈ Funcp we define the

function call sequence Ω = a1, α1(p1), · · · , am, αm(pm) and the set of all se-435

quences with Seq. We extend step to step′:

step’a1,α1(p1),a2,α2(p2),··· ,am,αm(pm) = (10)

stepam−1,αm−1(pm−1),am,αm(pm)(· · · stepa1,α1(p1),a2,α2(p2)(tx)) (11)

〈txp1a1,α1
, · · · , txpmpm,αm〉 is called a history iff ∀ i, j ∈ {1, · · · ,m} : i < j ⇔

∃ Ω ∈ Seq : tx
pj
aj ,αj = step’Ω(txpiai,αi)

For txp1a1,α1
= txp1a1,origin the address a1 ∈ Addr is denoted with tx.origin.

By executing the code α of a transaction txpa,α the address a is denoted with440

tx.sender.

The introduced syntax and semantics of the considered restricted Solidity

version represents our understanding of the Solidity semantics. It is possible

that this differs in some cases from the actual semantic. We work hard on

aligning our model with the reality. The target is to translate the semantics445

of a Solidity program in equivalent semantics of a PROMELA model to enable

its formal verification. Therefore we need to introduce the PROMELA syntax

next.

4.2. Syntax Definition of PROMELA

In general we follow the propositions of defining the syntax and semantics450

of PROMELA from [3]. Thereby we omitted expressions for channel communi-

cation, since there will be no parallel executed smart contracts. Recall Section

4.1, there exists always a total order between transactions and a smart contract

will never be simultaneously executed by two transactions. However, changing

the order of the transactions, or removing certain transactions means to alter455

the resulting contract state.

21

Definition 11 (PROMELA Syntax). Let GProm = (NProm,ΣProm, PProm,

SProm) be the context-free grammar describing the syntax of a PROMELA pro-

gram as follows:

SProm → P S | I S | A; S460

I → init { C }

P → proctype α () { C }

A → T α = Z

465

C → run α () | C;C | A

| atomic { Q } | d step { C }

| skip | break

| if G fi | do G od

| assert(B)470

Q → A; Q | ε

G → : : B → C G | : : else → C | ε

475

B → Z < Z | Z ≤ Z | Z > Z | Z ≥ Z

| B = B | B 6= B

| B && B | B | | B

| true | false

Z → z | Z + Z | Z - Z | Z ∗ Z | Z / Z480

T → byte | int

with z ∈ Z and α an arbitrary label of the form x1x2 · · ·xn, x1 ∈ {a−zA−Z}

and xi ∈ {a− zA− Z} ∪ N for n ≥ i > 1 and n ∈ N.

4.3. Validation in SPIN485

Originally SPIN was designed to verify the correctness of communication pro-

tocols. Communication between different processes is based on communication

channels, where one process writes a value into the channel at a certain position

in code, while other processes listen on the channel. Processes are defined as

proctypes and although it is possible to spawn new processes dynamically at490

execution time there exists an init section to specify some initial instructions

and to spawn one or several processes. It is also possible to annotate a proctype

with an active flag to mark it for automatic start-up at the beginning.

SPIN models the execution of multiple processes in interleaving semantics,

that means single expressions are executed atomically, but every possible per-495

mutation of process expressions of interleaving processes is considered.

22

To tell SPIN that a certain code section is considered to be executed atom-

ically it provides the keywords atomic and d step. Thereby we must carefully

differentiate between those commands. While the atomic expression allows to

execute a code section indivisibly, as long as there is no blocking expression,500

such as a blocking listening on a channel, within the atomic section, d step acts

similarly, but goto jumps that lead into or out of the section are prohibited.

Additionally the whole section is handled deterministically. Non-determinism is

resolved by always selecting the first guard that evaluates to true and channel

operations can not be used, since if their execution leads to an error it blocks505

the execution of the section.

When designing communication protocols a certain kind of non-determinism

is necessary, since messages are received by coincidence. SPIN allows the mod-

eling of non-determinism by introducing guarded expressions for branches and

loops. A guarded statement consists of a boolean expression that is the guard510

and a body, which contains program expressions. Program expressions are exe-

cuted, if the guard evaluates to true. An if statement and a loop comprise a set

of these guarded statements and it is absolutely possible that multiple guards

evaluate to true at the same time. In this case SPIN considers every possible

program flow. While in the if statement the guards are only checked once, in the515

loop expression those are checked repeatedly. To leave a loop a break statement

is necessary.

This explains how SPIN creates the state space of a PROMELA model. To

recapitulate: A state can be considered as a function that maps to every variable

that exists in the model a value of the corresponding variable data type domain.520

Obviously the state space can become very large even for small programs, if for

instance the whole domain of several integer variables must be considered. A

complete state space holds every possible program flow and every situation of a

program. Interesting for the model checking is now to identify states or paths in

the state space that either must be reached, or even repeatedly reached (liveness525

criteria) or must never be reached, since they represent an error state.

SPIN basically provides three mechanisms to specify the correctness of pro-

23

grams:

• Assertions

• Deadlock detection530

• Checking Liveness properties with LTL

Assertion are boolean expressions prefixed by the keyword assert. It can be

used to test properties of variables, as e.g., whether a variable is within certain

limits. SPIN then checks every possible path and provides a counterexample in

case it finds a path that allows to exceed these bounds.535

SPIN is able to detect deadlocks, that means situations in which a program

can not make a step to another program state anymore. An example is when

two programs simultaneously wait for an answer of the other process. So process

A waits for a message of process B, but process B can not send this message,

since it is waiting for a message of process A. There is no way that either process540

can move.

One advantage of applying model checking is the possibility to check for

liveness criteria. Liveness criteria express states that must be visited during

regular program execution. So for instance a web server should always listen

for web clients that request a certain web content. If the server does not longer545

listens for clients, it does not longer fulfill its purpose and thus crashed. Liveness

properties can be used to find paths that lead to situations in which a program

does not longer works as expected. Liveness properties in SPIN are expressed

in linear temporal logic (LTL).

For all these methods SPIN provides counterexamples in case problematic550

states are identified. Those counterexamples can be used to fix the model and

understand the actual problem of the current implementation.

SPIN provides an excellent base for all kinds of different verification methods,

however in this first version we concentrate on the evaluation of assertions.

24

5. The Approach555

We motivated the necessity of formal verification for creating smart contracts

in Section 1 and Section 2. A particularity of smart contracts is the problem that

many different parties from very different contexts must be able to understand

the contracts. In reality only people who can read and understand program

code are able to understand what a smart contract really does. Our aim is to560

provide a tool that allows to increase the safety and quality of smart contracts

and that is easily applicable without extensive previous training.

SPIN is a popular model checker with a good reputation earned in a long

history of application in industry and research. Therefore we decided to start

by using SPIN as a model checker. The whole process is than given by: First565

the Solidity program must be translated in an equivalent PROMELA model.

Thereby we must consider the operational semantics of Solidity, as well as the

semantics induced by running Solidity programs on the Ethereum blockchain.

Second there must be a possibility to provide assertions that are evaluated and

placed into the PROMELA model. As a final step the generated model must be570

executed and in case of a detected error a counterexample must be provided.

In the following we start by extending the Solidity syntax to handle SPIN

assertion. We than formally define the problem that we are going to solve and

introduce the translation function that converts a Solidity program into a SPIN

model.575

5.1. Extending the Solidity Syntax

One aspect in the extension of the Solidity syntax is that we do not want

to break the Solidity compilation process. Therefore a PROMELA assertion is

considered as a comment by the Solidity compiler. On the semantic level we

introduce a fail state, which is a state that must not be reachable through any580

program path.

25

Definition 12 (Extended Solidity Grammar). We extend the context-free gram-

mar GSol from Definition ?? by the following rule to G∗Sol:

O → // assert(B)

We define the operational semantics of the assertion statement during a trans-

action as follows:

〈B, σB , σM 〉 → True

〈//assert(B), σB , σM 〉 → 〈↓, σB , σM 〉
(12)

〈B, σB , σM 〉 → False

〈//assert(B), σB , σM 〉 → 〈⊥, σB , σM 〉
(13)

where ⊥ marks a fail state.585

We further introduce the failed transaction which is simply a transaction

that leads to a fail state.

Definition 13 (Failed Transaction). Let α ∈ Func and p = x1, · · · , xm ∈

Z,m ∈ N parameters and σB , σ
′
B , σM , σ

′
M program states. We write txpα ` ⊥ for

〈α(p), σB , σM 〉 →∗ 〈⊥, σ′B , σ′M 〉590

5.2. The Problem Statement

Based on these definitions we are now able to formally define the problem

that we are going to solve:

For an arbitrary smart contract, can we find a sequence of transactions that

leads this smart contract into a fail state?595

Definition 14 (The Problem). Let n > 0, n ∈ N and {txorigin, tx1, · · · , txn} be a

set of transactions. ∃ Π : {1, · · · , n} → {1, · · · , n} with 〈txorigin, txΠ(1), · · · , txΠ(n)〉

a history, such that ∃ i ∈ {1, · · · , n} : txi ` ⊥

5.3. Translating Solidity Code into a SPIN Model

To translate a Solidity program into an equivalent PROMELA model we600

define a function that takes a well-defined Solidity program and the non-terminal

symbols of the context-free grammar that describes the syntactic structure of

26

a Solidity program as arguments and outputs a PROMELA model. Parts of

the Solidity program are just consumed, while others are directly or indirectly

translated into corresponding PROMELA statements. To improve readability605

of the translation function (Equation 1), we split the definition into different

categories.

tr : (L(GSol)×NSol)→ (L(GProm) ∪ {ε}) (14)

γ, γ1, γ2 ∈ L(GSol) and α a label following Definition ??.

5.3.1. Program Structure

For the definition of the Solidity version at the beginning of a Solidity pro-610

gram and a contract, there exists no equivalent expressions in PROMELA.

Therefore we just consume them. Since we handle the declaration of variables

in an additional step we just remove them from the Solidity code and events

are not yet supported and therefore omitted. Since the translation function is

based on the context-free grammar we need to handle specific concatenation of615

code differently, what is done in the following four mappings.

• tr : (program solidity z1.z2.z3; γ, SSol) 7→ tr(γ,C)

• tr : (contract α{γ}, C) 7→ tr(γ,G)

• tr : (event α(γ); , E) 7→ ε

• tr : (mapping (T ⇒ T) α; ,M) 7→ ε620

• tr : (γ1γ2, G) 7→ tr(γ1,M)tr(γ2, G)

for G⇒MG ∧M ⇒∗ γ1 ∧G⇒∗ γ2

• tr : (γ1γ2, G) 7→ tr(γ1, E)tr(γ2, G)

for G⇒ EG ∧ E ⇒∗ γ1 ∧G⇒∗ γ2

• tr : (γ1γ2, G) 7→ tr(γ1, F)tr(γ2, G)625

for G⇒ FG ∧ F ⇒∗ γ1 ∧G⇒∗ γ2

27

• tr : (γ1γ2, G) 7→ tr(γ1, A)tr(γ2, G)

for G⇒ AG ∧A⇒∗ γ1 ∧G⇒∗ γ2

As described in Section 4 and explained in the problem statement in Defi-

nition 3 is the aim to find sequences of transactions that lead to an error state630

in the smart contract. Every transaction represents the execution of a smart

contract function, where the constructor is executed at smart contract instan-

tiation on the blockchain. To test a smart contract means to evaluate every

possible combination of function calls with every possible combination of pa-

rameters. Therefore a Solidity function is translated into a process and, since635

in the blockchain the transaction order is total and a smart contract is never

executed by two transactions simultaneously, the function body is considered

to be an atomic sequence. At the end of the translated function code we add

a label that is used to jump to the end of the execution in case of a return in

the Solidity code. That prevents that there is code executed after an occurring640

return statement.

• tr : (function α(γ1) F2 {γ2}, F) 7→

proctype α {

tr(γ1, P)

d step {645

tr(γ2, O)

}

return label α :

}

The constructor of a Solidity program is translated into an init section of650

the PROMELA model. This section is initially executed once and corresponds

to the one time execution of the constructor body. Subsequently the functions

of the smart contracts are non-deterministally spawned. This allows SPIN to

check every possible permutation of function executions and since it is done in a

loop it also allows to check the repeated execution of smart contract functions.655

28

We use a counter pc count to control the number of spawned processes. This

is in particular necessary, since SPIN only supports a finite number of parallely

spawned processes.

• tr : (function α(γ1) F2 {γ2}, F) 7→

init {660

d step {

tr(γ1, P)

tr(γ2, O)

}

#define MIN PC COUNT smin665

#define MAX PC COUNT smax

byte pc count = MIN PC COUNT;

do

:: pc count < MAX PC COUNT→ pc count + +; run α1()
...670

:: pc count < MAX PC COUNT→ pc count + +; run αn()

:: pc count >= MAX PC COUNT→ break

od

}

for α ∈ Constp, F2 ⇒∗ ε, smin, smax ∈ N and {α1, · · · , αn} = Funcp\Constp675

5.3.2. Program Flow

To translate the bodies of Solidity functions we need to recapitulate the

definition of the operational semantics provided in Definition ??. As mentioned

in Section 4.2 branching and loop statements in PROMELA are handled non-

deterministically in case that there are several guards evaluating to true. By680

translating a Solidity if statement into a PROMELA guarded if statement we

consider the boolean expression of the if statement as one guard leading to the

corresponding statement body. We need to add an else guard that is true, if

there is no other guard that is true. This guard allows us to jump over the

otherwise blocking branching statement.685

29

• tr : (if(γ1){γ2}, O) 7→

if

:: tr(γ1, B)→ tr(γ2, O)

:: else→ skip

fi690

The same holds for the translation of the looping statement. There exists one

guard that tests the loop condition and accordingly executes the loop body, but

another else guard allows us to jump out of the loop in case the loop condition

is not longer satisfied.

• tr : (while(γ1){γ2}, O) 7→695

do

:: tr(γ1, B)→ tr(γ2, O)

:: else→ break

od

As before we omit variable declarations, since those are handled in an ad-700

ditional step. Finally we translate the function return statement into an as-

signment of the returned value to a special variable that is created for every

value returning function. This variable can be used to test the return value of

functions with assertions. Additionally we introduce a jump to the end of the

process the prevent the execution of any code after reaching a return statement.705

• tr : (γ1; γ2, O) 7→ tr(γ1, O); tr(γ2, O)

for O ⇒ O;O ⇒∗ γ1; γ2

• tr : (T α,O) 7→ ε

• tr : (γ,O) 7→ tr(γ,A) with O ⇒ A⇒∗ γ

• tr : (return γ,O) 7→ retα = tr(γ,B); goto return label α710

for SSol ⇒∗ function α(P) F2 {O} and O ⇒∗ return γ

30

5.3.3. Memory Operations

Assignments also those that include algebraic operations, as for instance, in-

crement and decrement operations are handled equally in Solidity and PROMELA

and can be translated accordingly.715

• tr : (γ1δγ2, A) 7→ tr(γ1, A2)δtr(γ2, B), for δ ∈ {=,+ =,− =, ∗ =, / =}

and A⇒ A2δB ⇒∗ γ1δγ2

• tr : (γδ,A) 7→ tr(γ,A2)δ, for A⇒ A2δ ⇒∗ γδ and δ ∈ {++,−−}

• tr : (δγ,A) 7→ δtr(γ,A2), for A⇒ δA2 ⇒∗ δγ and δ ∈ {++,−−}

An expression that declares a variable and assigns directly a value to it is720

replaced by the plane assignment, since declarations are handled in an additional

step.

• tr : (Tα,A2) 7→ α

• tr : (γ,A2) 7→ tr(γ, V) with A2 ⇒ V ⇒∗ γ

Mappings are special dictionary type Solidity data structures that assign725

values to keys. In Solidity those can theoretically grow infinitely large, however,

we deal with mappings by introducing a roll-out parameter that defines how

many different key value pairs are supported. As a consequence the translation

function assigns the value to the variable that represents the corresponding key

of the mapping in the PROMELA model.730

• tr : (α, V) 7→ α

• tr : (α[γ], V) 7→ αtr(γ,Z)

This first version does not support all the data types of Solidity. The

supported data types are translated into the corresponding data types of the

PROMELA model. Note that to reduce the state space we aim to preferably735

use data types with small domains.

• tr : (γ, T) 7→ byte for γ ∈ {address, byte}

31

• tr : (γ, T) 7→ int for γ ∈ {uint, int}

The handling of function parameters is another important part. As men-

tioned before, we need to consider every possible combination of function calls740

and every possible combination of function parameter valuations. So for every

function parameter we introduce a corresponding variable that we increment

non-deterministically in a loop. In this way every parameter valuation is con-

sidered. Depending on the considered data type we use different lower and

upper bounds.745

• tr : (γ1 α1, · · · , γn αn, P) 7→

tr(γ1, T) α1 = minγ1 ;

do

:: α1 < maxγ1 → α1 = α1 + 1;

:: else→ break;750

od
...

tr(γn, T) αn = minγn ;

do

:: αn < maxγn → αn = αn + 1;755

:: else→ break;

od

for minγi ,maxγi the lower and upper bound of the data type γi = type(αi)

of variable αi ∈ Varp.

5.3.4. Boolean and Algebraic Operations760

Boolean and algebraic operations are handle equally in Solidity and PROMELA.

• tr : (true, B) 7→ true

• tr : (false, B) 7→ false

• tr : (γ,B) 7→ tr(γ, Z), B ⇒ Z ⇒∗ γ

32

• tr : (γ1δγ2, B) 7→ tr(γ1, B)δtr(γ2, B) for B ⇒ BδB ⇒∗ γ1δγ2 and δ ∈765

{&&, ||,==, 6=, <,>,≤,≥}

• tr : (γ, Z) 7→ tr(γ, V), for Z ⇒ V ⇒∗ γ

• tr : (z, Z) 7→ z, for z ∈ Z

• tr : (γ1δγ2, Z) 7→ tr(γ1, Z)δtr(γ2, Z), for δ ∈ {+,−, ∗, /,%} and Z ⇒

ZδZ ⇒∗ γ1δγ2770

5.3.5. Address Translation

Solidity provides a number of special variables that are assigned by the

runtime environment. As introduced in Section 4 every transaction originates

from an address. Thereby tx.origin refers to the address that was used to

initially instantiating the smart contract in the blockchain, while tx.sender refers775

the address of the current sender of the transaction that must not be necessarily

the same person that created the smart contract.

We reserve address 0 for the smart contract creator and assign it accordingly.

The sender of a transaction can differ but is always represented by a natural

number.780

• tr : (tx.origin, V) 7→ 0 We consider the smart contract creator address as

0.

• tr : (tx.sender, V) 7→ a For txpa,α where tx.sender is executed in α.

This concludes the translation function. To derive a PROMELA model from

a Solidity program we concatenate the necessary variable declarations with the785

output value of the translation function.

In PROMELA there exists no local variables. Every variable is globally

accessible. Therefore we create for every global Solidity variable a corresponding

PROMELA variable, but for the local variables we create variables that are

prefixed with the unique function name.790

33

For mappings we create a number of variables, where every variable corre-

sponds to a key in the mapping. A roll-out parameter determines the number

of created variables.

Since Solidity functions can return values we create for every function that

is not the constructor one return variable.795

Definition 15 (Model creation). Let p ∈ L(GSol) be a program with GSol =

(NSol,ΣSol, PSol, SSol) and type(· · ·), to(· · ·), of(· · ·) be functions from Definition

?? and nunroll ∈ N a predefined constant that determines the number of values

a mapping can maximally contain.

We define the following sets of PROMELA variable declarations:

DGlob = {γ α = 0 | α ∈ GlobVarp, γ = tr(type(α), T)}

DLoc = {γ f α = 0 | α ∈ LocVarp, γ = tr(type(α), T), f = of(α)}

DMap = {γ αi = 0 | α ∈ Mapp, i ∈ {1, · · · , nunroll}, γ = tr(to(α), T)}

DRet = {γ retα = 0 | α ∈ Funcp\Constp}

D = DGlob ∪DLoc ∪DMap ∪DRet

We create the PROMELA model by concatenating D with tr(p, SSol).800

6. The Implementation

We use Python 3 for the implementation of our tool chain, since it is a plat-

form independent programming language that does not require much boilerplate

code. It has a clear structure and there exists a great number of libraries that

can be included to extend functionality and unitize the implementation.805

In general the program structure can be divided into three parts (Figure

??). The first part contains the Solidity code parser. It reads the Solidity code

from a file, parses it and generates an abstract syntax tree. For creating the

34

Figure 2: Schematic Overview of the Program Architecture

parser we used the Toy Parser Generator 2 that allows the specification of the

grammar within the python code and provides a convenient API for parsing.810

This abstract syntax tree is processed in the second part of the program, which is

referred to as the tool chain. The tool chain contains a number of tools that are

applied on the abstract syntax tree. A tool always requires an abstract syntax

tree as input, manipulates it according to its purpose and returns the modified

abstract syntax tree. Then it is passed on to the next tool. Using the pattern815

of the tool chain it is very easy to encapsulate different functionalities and to

activate or deactivate them if required. This is invaluable during debugging.

In the following we present an overview of the implemented tools:

• EventRemovalTool : As mentioned in Section 5 events are currently not

supported and will be removed from the abstract syntax tree.820

• FunctionParameterTool : This tool handles function parameters. That

means it creates the non-deterministic loops to search the complete state

space of function parameter value combinations.

2http://cdsoft.fr/tpg/

35

• FunctionReturnTool : It translates the return statement into an assign-

ment to the special return variables.825

• IfToGuardedIfTool : It converts regular Solidity branching statements into

the PROMELA guarded branching notation.

• MappingTool : It translates the declaration and usage of mappings to the

corresponding roll-out mapping variables.

• MsgSenderTool : It translates the special Solidity variable msg.sender into830

an address.

• TxOriginTool : It replaces every use of the special Solidity variable tx.origin

by 0.

The tool chain applies all the registered tools on the abstract syntax tree

created by the parser and then translates it into PROMELA code. That is the835

third part. The fourth and final part is an programmatic interface that handles

the execution of the spin model checker.

The current implementation consists of 24 python files that contain 4, 338

lines of code of which 1, 009 lines are comments.

7. The Evaluation840

We demonstrate the implementation of the introduced methodology by in-

troducing a rather artificial example of a smart contract 3. The smart contract

(cf. Listing 1) implements a coin that can be send from one account to another

depending on the available account balance. The function sendCoin (line 14)

takes as arguments a receiving address and an amount of tokens that must be845

transferred. It returns a boolean value that indicates whether the account has

the necessary balance.

3This is a slightly modified of a popular contract used in tutorials.

36

A second function getBalance (line 24) allows querying the balance of a given

account. The corresponding function parameter is the account address.

The constructor (line 8) initializes the balance of account 0 with 1000 coins.850

We use three SPIN assertions to test and ensure the correct behavior of the

coin contract. In the constructor at line 10 we check whether the initial balance

was correctly set, while in line 16, after the check whether the current user holds

the necessary balance on her account (line 15, we check if the transferred amount

is smaller or equal to the account balance. This assertion is never reached in855

case of insufficient funding, since the branching statement in line 15 returns and

quits the function. Finally we check in line 19 whether the send money is now

on the account of the receiver.

1 pragma so l id i ty ˆ 0 . 4 . 4 ;

2860

3 // This i s j u s t a s imple example o f a coin l i k e contract .

4 // I t i s not standards compatible and cannot be expected to ta lk to other

5 // co in / token cont rac t s . I f you want to c r ea t e a standards compliant

6 // token , see : https :// github . com/ConsenSys/Tokens . Cheers !

7865

8 contract MetaCoin {

9 mapping (address => uint) ba lances ;

10

11 event Trans fer (address from , address to , uint va lue) ;

12870

13 function MetaCoin () {

14 ba lances [tx . o r i g i n] = 1000;

15 // s p i n a s s e r t (ba lances [tx . o r i g i n] == 1000)

16 }

17875

18 function sendCoin (address r e c e i v e r , uint amount)

19 re turns (bool s u f f i c i e n t) {

20 i f (ba lances [msg . sender] < amount) return f a l s e ;

21 // s p i n a s s e r t (ba lances [msg . sender] >= amount)

22 ba lances [msg . sender] = amount ;880

23 ba lances [r e c e i v e r] += amount ;

24 // s p i n a s s e r t (ba lances [r e c e i v e r] >= amount)

25 Trans fer (msg . sender , r e c e i v e r , amount) ;

26 return t rue ;

27 }885

28

29 function getBalance (address addr) r e turns (uint) {

30 return balances [addr] ;

31 }

32 }890

Listing 1: Example Solidity coin contract

The MetaCoin example that we use to evaluate the implementation is very

simple with a minor level of complexity. The advantage is that we can easily

37

determine its correctness by just looking. To provoke an error that we can find

using the SPIN model checker we assume the unlikely scenario that a program-

mer forgot to check whether the sending account has the necessary balance. So895

we omit the balance check in line 15.

When starting the translation program with the MetaCoin program it is

parsed into an abstract syntax tree and modified by the tool chain as introduced

in Section 6. The modified abstract syntax tree is finally translated into a

PROMELA model as shown in Listing 2.900

Following the formally described translation process the PROMELA model

comprises of three parts, where two parts represent the contract methods send-

Coint (line 6) and getBalance (line 40), while the third part is the init section

(line 44) holding the logic contained in the constructor of the smart contract

and responsible for the spawning of the processes.905

1 int r e tu rn 0 ge tBa lance ;

2 bool re turn 0 sendCoin ;

3 byte msg sender ;

4 int balances [2 5 5] ;

5910

6 proctype sendCoin (){

7 msg sender = 0 ;

8

9 #de f i n e LOW sendCoin amount 0

10 #de f i n e HIGH sendCoin amount 2147483647915

11 int amount ;

12 amount = LOW sendCoin amount ;

13 do

14 : : amount < HIGH sendCoin amount → amount++

15 : : break920

16 od

17

18 #de f i n e LOW sendCoin receiver 0

19 #de f i n e HIGH sendCoin receiver 254

20 byte r e c e i v e r ;925

21 r e c e i v e r = LOW sendCoin receiver ;

22 do

23 : : r e c e i v e r < HIGH sendCoin receiver → r e c e i v e r++

24 : : break

25 od930

26

27 assert (ba lances [msg sender] >= amount) ;

28

29 d step {

30 ba lances [msg sender] = balances [msg sender] amount ;935

31 ba lances [r e c e i v e r] = balances [r e c e i v e r] + amount ;

32 assert (ba lances [r e c e i v e r] >= amount) ;

33 return 0 sendCoin = true ;

34 goto r e tu rn l abe l s endCo in

35 r e tu rn l abe l s endCo in :940

38

36 }

37

38 }

39

40 proctype getBalance (){945

41 #de f i n e LOW getBalance addr 0

42 #de f i n e HIGH getBalance addr 254

43 byte addr ;

44 addr = LOW getBalance addr ;

45 do950

46 : : addr < HIGH getBalance addr → addr++

47 : : break

48 od

49

50 assert (addr > LOW getBalance addr)955

51

52 d step {

53 re tu rn 0 ge tBa lance = balances [addr] ;

54 goto r e tu rn l ab e l g e tBa l an c e

55 r e tu rn l ab e l g e tBa l an c e :960

56 }

57 }

58

59 i n i t {

60 atomic {965

61 ba lances [0] = 1000;

62 assert (ba lances [0] == 1000) ;

63 }

64

65 #de f i n e MIN PC COUNT 0970

66 #de f i n e MAX PC COUNT 10

67 byte pc count ;

68 pc count = MIN PC COUNT;

69 do

70 : : pc count < MAX PC COUNT → pc count++; run sendCoin () ;975

71 : : pc count < MAX PC COUNT → pc count++; run getBalance () ;

72 : : pc count >= MAX PC COUNT → break

73 od

74

75 }980

Listing 2: Translated PROMELA model

The logic in the smart contract functions that manipulates data is translated

into equal PROMELA statements. Note that we omitted the balance check in

the sendCoin function (line 6), but still use the assertion that tests whether this

check was done in line 27.

When applying the SPIN model checker on the model in Listing 2 it deter-985

mines that the assertion in line 27 was violated (Figure 2). It generates a trail

files that shows the path through the program that leads to the violation of the

assertion.

By analyzing the (lengthy) trail file it becomes obvious that we forgot to

39

Figure 3: Output of the SPIN model checker

implement the balance check. Although this is a very artificial and simple990

example it demonstrates the basic idea of applying model checking for verifying

the correctness of smart contracts. By extending the supported syntax and

utilizing the functionality provided by SPIN the range of application can be

even more extended.

8. Conclusion995

This paper presents smart contracts as a means for the automation of collab-

oration and business logics. As such, smart contracts are instrumental for the

automation and its implementation of organizational structures and their pro-

cesses described by DAO. The correctness of these implementations is decisive

due to the immutability of any blockchain, hence once initiated smart contracts1000

run for ever unless adaptations are agreed upon.

This paper developed a tool chain for translating chain code modelled in

Solidity via its operational semantics in logics towards an automata-based rep-

40

resentation of the original chain that can be verified by a model checker. The

last step of this tool chain generates a code representation in PROMELA, that1005

can be checked by model checker such as SPIN. Model checking results in a

confirmation that the code behaves as specified or counterexamples unveiling

coding errors. We used a rather common currency example to illustrate miss-

ing specifications in this smart contract code, i.e. availability of coins even for

negative balances.1010

The tool chain itself is founded in formal models describing the semantics of

Solidity code as well as the transformation calculus towards PROMELA models

serving as input for the model checker. We have decided to base the semantic

interpretation of Solidity code on operational semantics. Our language scope

focuses on core elements. Some data types such as strings or some functional1015

elements such remote calls of other contracts have to be included in the future.

However, the core computational elements are in place.

Another extension revolves around the limitation of the search space for

model checking. Our claim is to reduce the search space to be explored by the

model checker. One way to limit the search space is the necessity to spend1020

gas for each transaction. Hence, limiting the availability of gas, will reduce the

search space to be explored due to its lessened complexity.

A third extension addresses the readability of smart contracts. Imagine the

specification of a complex organizational structure and its processes in terms

of script-oriented languages such as Solidity. The level of precision convinces1025

from a computer scientists point of view. But a domain expert is potentially

overwhelmed by the mere complexity of the code. More abstract languages

are required to represent organizational structure and their processes. Lan-

guages and tools for process management as well as business modelling appear

attractive, because they allow for a domain-oriented modelling while also hav-1030

ing sufficient formality to be translated to script- or Petri Net-oriented process

specifications.

41

9. Acknowledgment

The authors would like to thank Matthias Volk from the RWTH Aachen

University for reviewing the paper and providing valuable comments.1035

References

[1] N. Szabo, Formalizing and securing relationships on public networks, First

Monday 2 (9). doi:10.5210/fm.v2i9.548.

URL http://ojphi.org/ojs/index.php/fm/article/view/548

[2] E. A. Emerson, 25 years of model checking, Springer-Verlag, Berlin, Heidel-1040

berg, 2008, Ch. The Beginning of Model Checking: A Personal Perspective,

pp. 27–45. doi:10.1007/978-3-540-69850-0_2.

URL http://dx.doi.org/10.1007/978-3-540-69850-0_2

[3] C. Baier, J. Katoen, Principles of Model Checking, MIT Press, 2008.

URL https://books.google.de/books?id=nDQiAQAAIAAJ1045

[4] G. J. Holzmann, The model checker spin, IEEE Transactions on Software

Engineering 23 (1997) 279–295.

[5] G. J. Holzmann, Mars code, Commun. ACM 57 (2) (2014) 64–73. doi:

10.1145/2560217.2560218.

URL http://doi.acm.org/10.1145/2560217.25602181050

[6] M. Ben-Ari, Principles of the Spin Model Checker, Springer London, 2008.

URL https://books.google.de/books?id=eVTN8UanIGcC

[7] P. Daian, Analysis of the dao exploit,

hackingdistributed.comHttp://hackingdistributed.com/2016/06/18/analysis-

of-the-dao-exploit/.1055

[8] K. Delmolino, M. Arnett, A. E. Kosba, A. Miller, E. Shi, Step by step

towards creating a safe smart contract: Lessons and insights from a cryp-

tocurrency lab, IACR Cryptology ePrint Archive 2015 (2015) 460.

42

http://ojphi.org/ojs/index.php/fm/article/view/548
http://dx.doi.org/10.5210/fm.v2i9.548
http://ojphi.org/ojs/index.php/fm/article/view/548
http://dx.doi.org/10.1007/978-3-540-69850-0_2
http://dx.doi.org/10.1007/978-3-540-69850-0_2
http://dx.doi.org/10.1007/978-3-540-69850-0_2
https://books.google.de/books?id=nDQiAQAAIAAJ
https://books.google.de/books?id=nDQiAQAAIAAJ
http://doi.acm.org/10.1145/2560217.2560218
http://dx.doi.org/10.1145/2560217.2560218
http://dx.doi.org/10.1145/2560217.2560218
http://dx.doi.org/10.1145/2560217.2560218
http://doi.acm.org/10.1145/2560217.2560218
https://books.google.de/books?id=eVTN8UanIGcC
https://books.google.de/books?id=eVTN8UanIGcC

[9] N. Atzei, M. Bartoletti, T. Cimoli, A survey of attacks on ethereum

smart contracts sok, in: Proceedings of the 6th International Confer-1060

ence on Principles of Security and Trust - Volume 10204, Springer-Verlag

New York, Inc., New York, NY, USA, 2017, pp. 164–186. doi:10.1007/

978-3-662-54455-6_8.

URL https://doi.org/10.1007/978-3-662-54455-6_8

[10] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system,1065

http://bitcoin.org/bitcoin.pdf (2008).

[11] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, A. Hobor, Making smart con-

tracts smarter, in: Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, CCS ’16, ACM, New York, NY,

USA, 2016, pp. 254–269. doi:10.1145/2976749.2978309.1070

URL http://doi.acm.org/10.1145/2976749.2978309

[12] M. Dhawan, Analyzing safety of smart contracts, IBM Research.

[13] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier,

N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote, N. Swamy,

S. Zanella-Béguelin, Formal verification of smart contracts: Short paper,1075

in: Proceedings of the 2016 ACM Workshop on Programming Languages

and Analysis for Security, PLAS ’16, ACM, New York, NY, USA, 2016, pp.

91–96. doi:10.1145/2993600.2993611.

URL http://doi.acm.org/10.1145/2993600.2993611

[14] J.-C. Fillitre, A. Paskevich, Why3 - where programs meet provers., in:1080

M. Felleisen, P. Gardner (Eds.), ESOP, Vol. 7792 of Lecture Notes in

Computer Science, Springer, 2013, pp. 125–128.

URL http://dblp.uni-trier.de/db/conf/esop/esop2013.html#

FilliatreP13

[15] Y. Hiray, Formal verification of ethereum contracts (yoichi’s attempts),1085

github.comHttps://github.com/pirapira/ethereum-formal-verification-

overview/blob/master/README.md.

43

https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
http://dx.doi.org/10.1007/978-3-662-54455-6_8
http://dx.doi.org/10.1007/978-3-662-54455-6_8
http://dx.doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
http://doi.acm.org/10.1145/2976749.2978309
http://doi.acm.org/10.1145/2976749.2978309
http://doi.acm.org/10.1145/2976749.2978309
http://dx.doi.org/10.1145/2976749.2978309
http://doi.acm.org/10.1145/2976749.2978309
http://doi.acm.org/10.1145/2993600.2993611
http://dx.doi.org/10.1145/2993600.2993611
http://doi.acm.org/10.1145/2993600.2993611
http://dblp.uni-trier.de/db/conf/esop/esop2013.html#FilliatreP13
http://dblp.uni-trier.de/db/conf/esop/esop2013.html#FilliatreP13
http://dblp.uni-trier.de/db/conf/esop/esop2013.html#FilliatreP13
http://dblp.uni-trier.de/db/conf/esop/esop2013.html#FilliatreP13

[16] F. Idelberger, G. Governatori, R. Riveret, G. Sartor, Evaluation of logic-

based smart contracts for blockchain systems, in: RuleML, 2016.

[17] I. Sergey, A. Kumar, A. Hobor, Scilla: a smart contract intermediate-level1090

language, CoRR abs/1801.00687.

[18] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, P. Daian, D. Guth,

B. Moore, Y. Zhang, D. Park, G. Roşu, Kevm: A complete semantics of the

ethereum virtual machine, in: Computer Security Foundations Symposium,

2018.1095

[19] TrailOfBits, Manticore: Symbolic execution for humans,

trailofbits.comHttps://blog.trailofbits.com/2017/04/27/manticore-

symbolic-execution-for-humans/.

[20] ConsenSys, Mythril - security analysis tool for ethereum smart contracts,

github.comHttps://github.com/ConsenSys/mythril.1100

[21] R. Revere, Solgraph - visualize solidity control flow for smart contract se-

curity analysis, github.comHttps://github.com/raineorshine/solgraph.

44

	Introduction
	Assessing the Correctness
	Related Work
	Foundations
	Syntax Definition of the Solidity Language
	Validation in SPIN

	The Approach
	Extending the Solidity Syntax
	The Problem Statement
	Translating Solidity Code into a SPIN Model
	Program Structure
	Program Flow
	Memory Operations
	Boolean and Algebraic Operations
	Address Translation

	The Implementation
	The Evaluation
	Conclusion
	Acknowledgment

